reaction solution
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 66)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yu Zhang ◽  
Qiang Liu ◽  
Yu Liu ◽  
Jin Tong ◽  
Zhongwei Huang ◽  
...  

Abstract A green method for the synthesis of in-situ Cu paste is developed. Cu particles are prepared through chemical reduction by selecting a special copper source, reducing agent, and solvent. Then the reaction solution is directly concentrated to obtain an in-situ Cu paste. The synthesis of Cu particles and the preparation of Cu paste are conducted simultaneously, and the process of separation, purification, drying, storage, and re-dispersion of powder are reduced. Particles are not directly exposed to air, thus the oxidation of micro/nano-Cu is effectively prevented, and the agglomeration of particles caused by drying and dispersion operations is simultaneously reduced. Furthermore, the proposed method has a certain universality, and different types of Cu sources can be used to prepare in-situ paste with different sizes and morphologies. The entire preparation process is simple, efficient, green, and the yield can reach 99.99%, which breaks through the bottleneck of the application of traditional micro/nano-Cu materials. Copper acetate based in-situ paste is sintered for 30 min at 260 °C and 2 MPa in a reducing atmosphere. The shear strength, resistivity, and thermal conductivity reach 55.26 MPa, 4.01 × 10-8 Ω·m, and 92.75 W/(m·K), respectively, which could meet the interconnection application of power semiconductor devices.


2022 ◽  

Abstract A number of methods have been applied to measure total antioxidant capacity (TAC), including FRAP, which is based on reducing the amount of iron ions in a complex compound. Researchers often use measurement of absorbance 10 min after mixing a sample with the FRAP reaction solution to calculate TAC. The FRAP solution has been shown to alter absorbance over time by ca 0.0010–0.0020 per hour, under storage conditions. This article intends to show that some substances do not fully or sufficiently react within the common analysis period. It is evident from the results that some substances react more quickly and others very slowly. Absorbance in relation to various phenols was measured. Compared to the levels of absorbance at 10 min, mean absorbance at 48 h was higher by 5,395% for vanillin, 426% for caffeic acid, 170% for sinapinic acid, 67% for gallic acid, 19% for syringic acid, and only by 4% for Trolox. Results for vanillin and caffeic acid indicate potential auto-catalysis.


2022 ◽  
Vol 14 (11) ◽  
Author(s):  
Dong Chen ◽  
Fangju Tian ◽  
Wanyu Liu ◽  
Jingyi Yu ◽  
Dafeng Song

Background: Salmonella is one of the main foodborne bacterial pathogens, causing diseases and death. The study used reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect Salmonella. Objectives: To design six primers and detect Salmonella using RT-LAMP to facilitate the rapid detection of pathogenic bacteria in food. Methods: We designed six primers based on the gene coding sequences of inv A, specific to Salmonella. Each reaction solution contained 6.0 mM MgSO4, 1 M betaine, 1.6 mM dNTPs, 160 U/mL Bst DNA polymerase, 0.2 μM of both external primers, 0.8 μM of both internal primers, and 0.2 μM of both loop primers. The reaction temperature was 65°C. Results: Our amplified products were separated by 2% agarose gel electrophoresis. The detection limit was 10 CFU per reaction. Conclusions: RT-LAMP exhibited the same accuracy as the GB assay in detecting Salmonella in foods. RT-LAMP was highly specific and sensitive; hence, it may serve as an effective tool in detecting Salmonella.


2022 ◽  
Author(s):  
Zhaoxia Shi ◽  
Jinxiu Ma ◽  
Feng Li ◽  
Taohai Li

Nearly monodisperse Dy2Sn2O7 material have been prepared via one-step hydrothermal method by changing the pH of the reaction solution. The nanoparticles were used for sonocatalytic degradation of Acid blue (AB)...


2022 ◽  
Author(s):  
K. Lam ◽  
M. C. Leech ◽  
A. J. J. Lennox

The multistep synthesis of natural products has historically served as a useful and informative platform for showcasing the best, state-of-the-art synthetic methodologies and technologies. Over the last several decades, electrochemistry has proved itself to be a useful tool for conducting redox reactions. This is primarily due to its unique ability to selectively apply any oxidizing or reducing potential to a sufficiently conductive reaction solution. Electrochemical redox reactions are readily scaled and can be more sustainable than competing strategies based on conventional redox reagents. In this chapter, we summarize the examples where electrochemistry has been used in the synthesis of natural products. The chapter is organized by the reaction type of the electrochemical step and covers both oxidative and reductive reaction modes.


2021 ◽  
Vol 19 ◽  
Author(s):  
Asieh Yahyazadeh ◽  
Motahare Nafei-Kohi ◽  
Esmayeel Abbaspour-Gilandeh ◽  
Mehraneh Aghaei-Hashjin

Abstract: Catalyzed with SCMNPs@CA-EA-SO3H, as a green and heterogeneous solid acid catalyst, 3,4-dihydropyrimidin-2(1H)-one and octahydroquinazolinone derivatives were obtained in high-to-excellent yields and in short reaction times via the one-pot multi-component condensation of ethyl acetoacetate or dimedone, urea, and aldehyde compounds under solvent-free conditions. More importantly, the green catalytic system could be easily collected from the reaction solution utilizing an external magnet and reused for five runs with a negligible decrease in yields and reaction rate.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 47-58
Author(s):  
Sarah Tschirner ◽  
Eric Weingart ◽  
Linda Teevs ◽  
Ulf Prüße

In this work, a highly selective and active gold-based catalyst for the oxidation of high concentrated monoethylene glycol (MEG) in aqueous solution (3 M, 20 wt%) is described. High glycolic acid (GA) selectivity was achieved under mild reaction conditions. The optimization of the catalyst composition and of the reaction conditions for the oxidation of MEG in semi-batch mode under alkaline conditions led to a GA yield of >80% with a GA selectivity of about 90% in short reaction time. The bimetallic catalyst 0.1 wt% AuPt (9:1)/CeO2 showed very high activity (>2000 mmolMEG/gmetalmin) in the oxidation of MEG and, contrary to other studies, an extremely high educt to metal mole ratio of >25,000 was used. Additionally, the gold–platinum catalyst showed a high GA selectivity over more than 10 runs. A very efficient and highly selective process for the GA production from MEG under industrial relevant reaction conditions was established. In order to obtain a GA solution with high purity for the subsequent polymerization, the received reaction solution containing sodium glycolate, unreacted MEG and sodium oxalate is purified by a novel down-stream process via electrodialysis. The overall GA yield of the process exceeds 90% as unreacted MEG can be recycled.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Eva Kinnertová ◽  
Václav Slovák ◽  
Roman Maršálek ◽  
Martin Mucha

Porous carbons, originated from resorcinol-formaldehyde (RF) gels, show high application potential. However, the kinetics and mechanism of RF condensation are still not well described. In this work, different methods (dynamic light scattering–DLS, Fourier transform infrared spectroscopy–FTIR, low field 1H nuclear magnetic resonance relaxometry–1H-NMR, and differential scanning calorimetry–DSC) were used to follow the isothermal RF condensation of mixtures varying in catalyst content (Na2CO3) and reactant concentration. The applicability and results obtained by the methods used differ significantly. The changes in functional groups can be followed by FTIR only at very early stages of the reaction. DLS enables the estimate of the growth of particles in reaction solution, but only before the solution becomes more viscous. Following the relaxation of 1H nuclei in water during RF condensation brings a different view on the system—this technique follows the properties of the present water that is gradually captured in polymeric gel. From this side, the process behaves similarly to the nucleation reaction, which is in contradiction to the n-order mechanism confirmed by other techniques. The widest range of applicability was found for DSC measurement of the freezing/melting behavior of the reaction mixture, which is possible to use without any limitations until full solidification. Furthermore, this approach enables us to follow the gradual formation and development of the gel through the intermediate undergoing glass transition.


2021 ◽  
Author(s):  
Bartłomiej Witkowski ◽  
Priyanka Jain ◽  
Tomasz Gierczak

Abstract. The reaction of hydroxyl radicals (OH) with 4-nitrophenol (4-NP) in the aqueous solution was investigated at pH = 2 and 9. As a result, the molar yield of the phenolic products was measured to be 0.20 ± 0.05 at pH = 2 and 0.40 ± 0.1 at pH = 9. The yield of 4-nitrocatechol (4-NC) was higher at pH = 9; at the same time, a lower number of phenolic products was observed due to the hydrolysis and other irreversible reactions at pH > 7. Mineralization investigated with total organic carbon (TOC) technique showed that after 4-NP was completely consumed approx. 85 % of the organic carbon remained in the aqueous solution. Hence, up to 65 % of the organic carbon that remained in the aqueous solution accounted for the open-ring non-phenolic products. The light absorptivity of the reaction solution between 250 and 600 nm decreased as a result of OH reaction with 4-NP. At the same time, 4-NP solution showed some resistance to chemical bleaching due to the formation of the light-absorbing by-products. This phenomenon effectively prolongs the time-scale of chemical bleaching or 4-NP via reaction with OH by a factor of 3–1.5 at pH 2 and 9, respectively. The experimental data acquired indicated that both photolysis and reaction with OH can be important removal processes of the atmospheric brown-carbon from the aqueous particles containing 4-NP.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1678
Author(s):  
Francisco de Azambuja ◽  
Nele Steens ◽  
Tatjana N. Parac-Vogt

The reactivity of polyoxovanadates towards adenosine-5′-triphosphate (ATP) hydrolysis at pH 2, 4, 6 and 7 is reported. Detailed kinetic investigation of ATP hydrolysis in the presence of polyoxovanadates was performed through multinuclear nuclear magnetic resonance (NMR) spectroscopy. In general, rate acceleration of up to five orders of magnitude was observed in the presence of vanadates compared to spontaneous ATP hydrolysis, with the greatest acceleration observed for reactions carried out at pH 2. Interestingly, the effectiveness of vanadates in promoting ATP hydrolysis decreased as the pH of the reaction solution increased; nevertheless, at pH = 7, the rate increase of one order of magnitude in comparison to blank reactions was still observed. Interactions between vanadate species in solution and ATP were investigated by means of 31P and 51V NMR spectroscopy, and this pointed towards the preferential interaction of vanadium with the phosphate groups rather than other regions of the ATP molecule.


Sign in / Sign up

Export Citation Format

Share Document