Small double limit with reflecting Wentzel boundary condition

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ibrahima Sane ◽  
Alassane Diedhiou

Abstract We provide a large deviation principle on the stochastic differential equations with reflecting Wentzel boundary condition if δ ε {\frac{\delta}{\varepsilon}} tends to 0 when the two parameters δ (homogenization parameter) and ε (the large deviations parameter) tend to zero. Here, we suppose that the homogenization parameter converges sufficiently quickly more than the large deviations parameter. Furthermore, we will make explicit the associated rate function.

2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Qinghua Wang

We obtain a large deviation principle for the stochastic differential equations on the sphere Sd associated with the critical Sobolev Brownian vector fields.


2020 ◽  
Vol 28 (3) ◽  
pp. 197-207
Author(s):  
Clément Manga ◽  
Auguste Aman

AbstractThis paper is devoted to derive a Freidlin–Wentzell type of the large deviation principle for stochastic differential equations with general delayed generator. We improve the result of Chi Mo and Jiaowan Luo [C. Mo and J. Luo, Large deviations for stochastic differential delay equations, Nonlinear Anal. 80 2013, 202–210].


2014 ◽  
Vol 14 (03) ◽  
pp. 1450004 ◽  
Author(s):  
Ana Bela Cruzeiro ◽  
André de Oliveira Gomes ◽  
Liangquan Zhang

In this paper, we consider coupled forward–backward stochastic differential equations (FBSDEs in short) with parameter ε > 0, of the following type [Formula: see text] We study the asymptotic behavior of its solutions and establish a large deviation principle for the corresponding processes.


2010 ◽  
Vol 10 (04) ◽  
pp. 465-495 ◽  
Author(s):  
TIANGE XU ◽  
TUSHENG ZHANG

In this paper, we obtain a large deviation principle for the flow of homeomorphisms of the stochastic differential equations on the sphere Sd associated with the critical Sobolev Brownian vector fields.


2010 ◽  
Vol 10 (03) ◽  
pp. 315-339 ◽  
Author(s):  
A. A. DOROGOVTSEV ◽  
O. V. OSTAPENKO

We establish the large deviation principle (LDP) for stochastic flows of interacting Brownian motions. In particular, we consider smoothly correlated flows, coalescing flows and Brownian motion stopped at a hitting moment.


2005 ◽  
Vol 42 (01) ◽  
pp. 267-274 ◽  
Author(s):  
Ken Duffy ◽  
Anthony P. Metcalfe

Given a sequence of bounded random variables that satisfies a well-known mixing condition, it is shown that empirical estimates of the rate function for the partial sums process satisfy the large deviation principle in the space of convex functions equipped with the Attouch-Wets topology. As an application, a large deviation principle for estimating the exponent in the tail of the queue length distribution at a single-server queue with infinite waiting space is proved.


Sign in / Sign up

Export Citation Format

Share Document