scholarly journals Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture

2015 ◽  
Vol 16 (2) ◽  
pp. 158-166
Author(s):  
Andriy Sorochak ◽  
Pavlo Maruschak ◽  
Olegas Prentkovskis

Abstract The main regularities in fatigue fracture of the railway axle material - the OSL steel - are found in this paper. Micromechanisms of fatigue crack propagation are described and systematized, and a physical-mechanical interpretation of the relief morphology at different stages of crack propagation is proposed for fatigue cracks in specimens cut out of the surface, internal and central layers of the axle.

2011 ◽  
Vol 314-316 ◽  
pp. 945-948
Author(s):  
You Yang ◽  
Hua Wu ◽  
Xue Song Li

High cycle fatigue behavior of MB8 magnesium alloy were investigated using an up-and-down load method. High cycle fatigue tests were carried out up to 107cycles at a stress ratio R=0.1 and frequency of 90Hz on specimens using a high frequency fatigue machine. Fatigue fracture surfaces of specimens that in the high cycle fatigue tests were also observed using a scanning electron microscope for revealing the micro-mechanisms of fatigue crack initiation and propagation. The results showed that fatigue limit of MB8 alloy at room temperature is 90.2 MPa under the numbers of cycle to failure Nf=107 conditions using up-and-down method calculation. The fatigue strength of the alloy is about 34% of its tensile strength. The micro-fatigue fracture surface of MB8 alloy included three representative regions. These regions are fatigue initiation area, fatigue crack propagation area and fatigue fracture area. Fatigue cracks of MB8 alloy initiate principally at surface and subsurface, and propagate along the grain boundary. The fatigue striations of fatigue crack propagation area are not clear. The fatigue fracture of test specimens show the rupture characteristics of dimple.


2019 ◽  
Vol 9 (20) ◽  
pp. 4254 ◽  
Author(s):  
Hashen Jin ◽  
Jiajia Yan ◽  
Weibin Li ◽  
Xinlin Qing

Under cyclic and repetitive loads, fatigue cracks can be further propagated to a crucial level by accumulation, causing detrimental effects to structural integrity and potentially resulting in catastrophic consequences. Therefore, there is a demand to develop a reliable technique to monitor fatigue cracks quantitatively at an early stage. The objective of this paper is to characterize the propagation of fatigue cracks using the damage index (DI) calculated by various acoustic features of ultrasonic guided waves. A hybrid DI scheme for monitoring fatigue crack propagation is proposed using the linear fusion of damage indices (DIs) and differential fusion of DIs. An experiment is conducted on an SMA490BW steel plate-like structure to verify the proposed hybrid DIs scheme. The experimental results show that the hybrid DIs from various acoustic features can be used to quantitatively characterize the propagation of fatigue cracks, respectively. It is found that the fused DIs calculated by the acoustic features in the frequency domain have an improved reliable manner over those of the time domain. It is also clear that the linear and differential amplitude fusion DIs in the frequency domain are more promising to indicate the propagation of fatigue cracks quantitatively than other fused ones.


Author(s):  
Hiroyuki Tsuritani ◽  
Toshihiko Sayama ◽  
Yoshiyuki Okamoto ◽  
Takeshi Takayanagi ◽  
Masato Hoshino ◽  
...  

Recently, due to the increasing heat density of printed circuit boards (PCBs), thermal fatigue damage in the joints has exerted a more significant influence on the reliability of electronic components. Accordingly, the development of a new nondestructive inspection technology is strongly desired by related industries. The authors have applied a synchrotron radiation X-ray micro-tomography system to the nondestructive observation of micro-cracks. However, the reconstruction of CT images is difficult for planar objects such as PCB substrates, due to insufficient X-ray transmission in the direction parallel to the substrates. In order to solve this problem, a synchrotron radiation laminography system was developed to relax size restrictions on the observation samples, and was applied to the three-dimensional nondestructive evaluation of several kinds of solder joints, which were loaded under accelerated thermal cyclic conditions via thermal shock tests. Moreover, the thermal fatigue crack propagation process that occurs under actual PCB energization loading conditions will differ from that under the usual acceleration test conditions. In this work, the possibility of in-situ monitoring of the thermal fatigue crack propagation process using the laminography system was investigated at die-attached joints subjected to cyclic energization loading, which is close to the actual usage conditions of PCBs. The optical system developed for use in the laminography system was constructed to provide a rotation stage with a tilt from the horizontally incident X-ray beam, and to obtain X-ray projection images via a beam monitor. In this manner, the X-ray beam is sufficiently transmitted through the planar specimen in all projections. The observed specimens included several die-attached joints, in which 3 mm square ceramic dies had been mounted on a 40 mm square FR-4 substrate using Sn-3.0wt%Ag-0.5wt%Cu solder. Consequently, the laminography system was successfully applied to the in-situ monitoring of thermal fatigue cracks that appeared in the solder layer under cyclic energization. This was possible because the laminography images obtained in the energization state have a quality that is equivalent to those obtained in a non-energized state, provided that the temperature distribution of the specimen is stable. In addition, the fatigue crack propagation process can be quantitatively evaluated by measuring the crack surface area and calculating the average crack propagation rate. However, in some cases, the appearance of thermal fatigue cracks was not observed in a solder layer that had been loaded by the accelerated thermal cycle test. This result strongly suggests that delamination occurred at the interface, which indicates that the corresponding fracture mode was significantly influenced by the type of thermal loading.


Sign in / Sign up

Export Citation Format

Share Document