A New Reduction of the Self-Dual Yang–Mills Equations and its Applications

2016 ◽  
Vol 71 (7) ◽  
pp. 631-638 ◽  
Author(s):  
Yufeng Zhang ◽  
Yan Wang

AbstractThrough imposing on space–time symmetries, a new reduction of the self-dual Yang–Mills equations is obtained for which a Lax pair is established. By a proper exponent transformation, we transform the Lax pair to get a new Lax pair whose compatibility condition gives rise to a set of partial differential equations (PDEs). We solve such PDEs by taking different Lax matrices; we develop a new modified Burgers equation, a generalised type of Kadomtsev–Petviasgvili equation, and the Davey–Stewartson equation, which also generalise some results given by Ablowitz, Chakravarty, Kent, and Newman.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the improved fractional subequation method is applied to establish the exact solutions for some nonlinear fractional partial differential equations. Solutions to the generalized time fractional biological population model, the generalized time fractional compound KdV-Burgers equation, the space-time fractional regularized long-wave equation, and the (3+1)-space-time fractional Zakharov-Kuznetsov equation are obtained, respectively.


1994 ◽  
Vol 49 (1) ◽  
pp. 151-158
Author(s):  
Rod Halburd

It has been conjectured by R. S. Ward that the self-dual Yang-Mills Equations (SDYMEs) form a “master system” in the sense that most known integrable ordinary and partial differential equations are obtainable as reductions. We systematically construct the group of symmetries of the SDYMEs on R4 with semisimple gauge group of finite dimension and show that this yields only the well known gauge and conformal symmetries.


1999 ◽  
Vol 59 (1) ◽  
pp. 337-342 ◽  
Author(s):  
Markus Bär ◽  
Rainer Hegger ◽  
Holger Kantz

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


Author(s):  
S. Berjawi ◽  
E. V. Ferapontov ◽  
B. Kruglikov ◽  
V. Novikov

We study second-order partial differential equations (PDEs) in four dimensions for which the conformal structure defined by the characteristic variety of the equation is half-flat (self-dual or anti-self-dual) on every solution. We prove that this requirement implies the Monge–Ampère property. Since half-flatness of the conformal structure is equivalent to the existence of a non-trivial dispersionless Lax pair, our result explains the observation that all known scalar second-order integrable dispersionless PDEs in dimensions four and higher are of Monge–Ampère type. Some partial classification results of Monge–Ampère equations in four dimensions with half-flat conformal structure are also obtained.


Sign in / Sign up

Export Citation Format

Share Document