Analytical solution for unsteady flow behind ionizing shock wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


Author(s):  
Manuel Núñez ◽  
Alberto Lastra

The effects of the flow of an electrically conducting fluid upon a magnetic field anchored at the boundary of a domain are studied. By taking the resistivity as a small parameter, the first-order approximation of an asymptotic analysis yields a boundary layer for the magnetic potential. This layer is analysed both in general and in three particular cases, showing that while in general its effects decrease exponentially with the distance to the boundary, several additional effects are highly relevant.



Author(s):  
Nandita Gupta ◽  
Kajal Sharma ◽  
Rajan Arora

The purpose of this study is to obtain the solution using the Lie group of symmetry method for the problem of propagating magnetogasdynamic strong cylindrical shock wave in a self-gravitating non-ideal gas with the magnetic field which is taken to be axial. Here, isothermal flow is considered. In the undisturbed medium, varying magnetic field and density are taken. Out of four different cases, only three cases yield the similarity solutions. Numerical computations have been performed for the cases of power-law and exponential law shock paths, to find out the behavior of flow variables in the flow-field immediately behind the shock. Similarity solutions are carried out by taking arbitrary constants in the expressions of infinitesimals of the Lie group of transformations. Also, the study of the present work provides a clear picture of whether and how the variations in the non-ideal parameter of the gas, Alfven-Mach number, adiabatic exponent, ambient magnetic field variation index and gravitational parameter affect the propagation of shock and the flow behind it. Software package “MATLAB” is used for all the computations.



AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1721-1727
Author(s):  
Prasanth B. Nair ◽  
Andrew J. Keane ◽  
Robin S. Langley


1999 ◽  
Vol 08 (05) ◽  
pp. 461-483
Author(s):  
SEIYA NISHIYAMA

First-order approximation of the number-projected (NP) SO(2N) Tamm-Dancoff (TD) equation is developed to describe ground and excited states of superconducting fermion systems. We start from an NP Hartree-Bogoliubov (HB) wave function. The NP SO(2N) TD expansion is generated by quasi-particle pair excitations from the degenerate geminals in the number-projected HB wave function. The Schrödinger equation is cast into the NP SO(2N) TD equation by the variation principle. We approximate it up to first order. This approximate equation is reduced to a simpler form by the Schur function of group characters which has a close connection with the soliton theory on the group manifold.



Author(s):  
Bappaditya Banerjee ◽  
Anil K. Bajaj

Abstract Dynamical systems with two degrees-of-freedom, with quadratic nonlinearities and parametric excitations are studied in this analysis. The 1:2 superharmonic internal resonance case is analyzed. The method of harmonic balance is used to obtain a set of four first-order amplitude equations that govern the dynamics of the first-order approximation of the response. An analytical technique, based on Melnikov’s method is used to predict the parameter range for which chaotic dynamics exist in the undamped averaged system. Numerical studies show that chaotic responses are quite common in these quadratic systems and chaotic responses occur even in presence of damping.



Sign in / Sign up

Export Citation Format

Share Document