Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed Atteya ◽  
Mohamed A. El-Borie ◽  
Gamal D. Roston ◽  
Abdel-Aziz Samir El-Helbawy ◽  
Punam Kumari Prasad ◽  
...  

Abstract Nonlinear stable oscillations, solitary, periodic and shock waves in electron–positron–ion (EPI) quantum plasma in the presence of an external static magnetic field are reported. The Korteweg-de Vries-Burgers (KdVB) equation is derived by the reductive perturbation technique (RPT). The wave solution gives shock waves depending on various parameters as quantum diffraction parameter (β), electron and positron Fermi temperatures, and densities of the system species. Amplitude, polarity, speed, and width of wave solutions are remarkably modified by species densities, kinematic viscosity, and the Bohm potential. Existence of stable oscillation of ion-acoustic waves (IAWs) is shown by using the concept of phase plane analysis. Stability of wave solution is analysed by examining the Bohm potential effect. In the absence of dissipation, phase plane of the considered plasma system is analysed to discuss the existence of periodic wave solution. The results of this study could be helpful for comprehension of the wave features in dense quantum plasmas, like white dwarfs, laboratory plasma as interaction experiments of intense laser-solid matter and microelectronic devices.

2011 ◽  
Vol 89 (9) ◽  
pp. 961-965 ◽  
Author(s):  
Hamid Reza Pakzad

Propagation of nonlinear quantum ion–acoustic shock waves in dense quantum plasma, whose constituents are electrons, positrons, and positive ions, is investigated using a quantum hydrodynamical model. Moreover, it is assumed that ion velocity is weakly relativistic. Also, we consider the effects of kinematic viscosity among the plasma constituents. By using reductive perturbation method, the Korteweg – de Vries – Burger equation is derived. The effects of relativistic ions, ion temperature, and the quantum Bohm potential on the shock waves are reported in this paper.


2016 ◽  
Vol 71 (12) ◽  
pp. 1131-1137 ◽  
Author(s):  
Md. Masum Haider

AbstractAn attempt has been taken to find a general equation for degenerate pressure of Chandrasekhar and constants, by using which one can study nonrelativistic as well as ultra-relativistic cases instead of two different equations and constants. Using the general equation, ion-acoustic solitary and shock waves have been studied and compared, numerically and graphically, the two cases in same situation of electron-positron-ion plasmas. Korteweg–de Vries (KdV) and KdV–Barger equations have been derived as well as their solution to study the soliton and shock profiles, respectively.


2017 ◽  
Vol 72 (7) ◽  
pp. 627-635 ◽  
Author(s):  
Md. Masum Haider ◽  
Aynoon Nahar

AbstractThe propagation of dust-ion-acoustic (DIA) solitary and shock waves in multi-ion (MI) unmagnetised and magnetised plasmas have been studied theoretically. The plasma system contains positively and negatively charged inertial ions, opposite polarity dusts, and high energetic super-thermal electrons. The fluid equations in the system are reduced to a Korteweg-de Vries (K-dV) and Korteweg-de Vries Burger (K-dVB) equations in the limit of small amplitude perturbation. The effect of super-thermal electrons, the opposite polarity of ions, and dusts in the solitary and shock waves are presented graphically and numerically. Present investigations will help to astrophysical and laboratory plasmas.


2015 ◽  
Vol 32 (1) ◽  
pp. 015201 ◽  
Author(s):  
M. Ferdousi ◽  
S. Yasmin ◽  
S. Ashraf ◽  
A. A. Mamun

Sign in / Sign up

Export Citation Format

Share Document