positive ions
Recently Published Documents


TOTAL DOCUMENTS

1371
(FIVE YEARS 86)

H-INDEX

68
(FIVE YEARS 4)

2021 ◽  
pp. 4674-4686
Author(s):  
Muayad Abdullah Ahmed

The charge species plays a vital role in changing the field in direct current discharge (DC). This article introduces a numerical modeling in one dimension of the inner electrode diameter of oxygen-fed negative corona discharge in coaxial electrodes geometry. The properties of negative corona plasma in a concentric cylindrical electrodes (wire-cylinder) were simulated by COMSOL Multiphysics software. Various diameters of negative corona electrode, namely 0.01, 0.025, 0.05, 0.075, and 0.125 mm, were applied, ​​where the diameter of the outer cylindrical electrode was taken as 15 mm. The model was run at atmospheric pressure and the applied negative voltage was -10 KV. Moreover, oxygen gas was used to fill the inter-electrodes distance. Furthermore, the spatial distribution of electrons, positive ions, and negative ions as a function of the diameter of negative electrode of the negative corona discharge were investigated. The study also tested the effects of the electrode diameter of the negative corona discharge on ozone generation. The observed decrease in ozone density with the increase in negative electrode diameter was reasonable and consistent with other results provided by researchers in this field.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefen Kan ◽  
Ke Chen ◽  
Cheng Yin ◽  
Yu Yang ◽  
Minglei Shan ◽  
...  

Planar fractal microstructure is observed on the silver film treated by positive corona discharge for the first time. Due to the abundant positive ions driven by the electrical field of positive polarity, surface modification is mainly induced by the plasma oxidation effect, resulting in a large scale of dendritic pattern with self-similarity and hierarchy. In contrast, negative ions dominate the plasma-film interaction under negative corona discharge condition, leading to a different surface morphology without fractal characteristics. A growth model based on the modified diffusion-limited aggregation (DLA) theory is proposed to describe the formation of the dendritic fractal structure, whilst the physics behind is attributed to the electric field directed diffusion of the positive ions around the surface roughness. Numerical simulation verifies the high density of the hot spot in the dendritic pattern, which may enable potential applications in fractal photonic metamaterials.


2021 ◽  
Vol 945 (1) ◽  
pp. 012057
Author(s):  
Yi Jun Chai ◽  
Yee Sern Ng ◽  
Katrina Pui Yee Shak ◽  
Law Yong Ng

Abstract High iron (Fe2+) concentration in groundwater is a severe issue in many regions of the world. This study attempts to investigate the effectiveness of biosorbents derived from longan peel (LP), pomelo peel (PP) and jackfruit peel (JP) for the adsorption of Fe2+ from aqueous solution in various forms. A batch adsorption study was carried out with an initial Fe2+ concentration of 10 mg/L for 2 h. The results showed that the highest removal efficiency was achieved for PP and its biochar at 97.38% and 99.45%, respectively. High removal efficiency implied that PP contained favourable characteristics for the adsorption of Fe2+. Under the scanning electron microscope (SEM), the surface structure of PP displayed visible dimensions with a relatively large pore size compared with LP and JP. Characterisation study using Fourier-transform infrared spectroscopy (FTIR) reveals that the carboxylate groups and ester carbonyl band participated in the adsorption process. At higher initial pH of 5.83, adsorption of Fe2+ using PP gives higher removal efficiency due to lower competition on electrostatic interaction between positive ions in the solution and the surface of biosorbents. Furthermore, adsorption uptake of 83.0 mg/g was attainable with an initial concentration of 100 mg/L. This study has proven the feasibility of PP as a low cost biosorbents for removing Fe2+ in an aqueous solution.


2021 ◽  
Author(s):  
Suresh Basnet ◽  
Anish Maskey ◽  
Atit Deuja ◽  
Raju Khanal

Abstract The effects of ion beam current associated with the streaming positive ions on the dust charge fluctuations and ion acoustic wave propagation in quiescent electronegative dusty plasma have been investigated using fluid theory. The dust charging phenomenon and unstable mode of ion waves are modified for two streaming conditions of positive ions which are extended and graphically illustrated. The dependencies of the growing and damping rate of ion waves on dust density and the size of dust grains are studied. The evolution of dust surface potential is found in the negative domain with the increase in concentration of negative ions and the instability rate for ion wave decreases. Furthermore, it is shown that the dust surface potential shifts into positive domain as the electrons are significantly depleted (and the plasma becomes ion-ion plasma) from the electronegative plasma and thus ion waves exhibit a damping phenomenon.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012035
Author(s):  
G A Mesyats ◽  
N M Zubarev

Abstract We propose a scenario of the initiation of explosive electron emission on the boundary of the electrode and a high-pressure gas. According to this scenario, positive ions are formed due to the gas ionization by field-emission electrons and accumulated in the vicinity of protrusions of micron size at the cathode. The distance between the ion cloud and the emitting surface decreases with increasing pressure which results in a growth of the local field. As a consequence, an explosive growth of the emission current density occurs for a dense gas (the gas with the pressure of tens of atm). As a result, explosive-emission centers can be formed in dozens of ps. These centers give a start to plasma channels expanding towards the anode. Runaway electron flow generated near the channel heads ionizes the gas gap, causing its subnanosecond breakdown.


2021 ◽  
Vol 58 (6) ◽  
pp. 452-461
Author(s):  
Linlin Wang ◽  
Xiaoxi Wang ◽  
Runhan Hou ◽  
Qian Zhang ◽  
Yuexin Wang

Abstract In this work, a series of emulsifiers were prepared by changing the molar ratio of polyvinyl alcohol (PVA) to the long chain quaternary ammonium salt (A0). The emulsifiers were characterised by FTIR and 1HNMR. The stability of the emulsions was checked and evaluated by determining the phase separation and by UV-Vis spectrophotometry. The emulsion stability increased with increasing emulsifier concentration, which was mainly due to the reduced droplet size and increased viscosity of the emulsions. Stability was also dependent on pH. At pH values between 5 to 3, stability was increased, but at further decreasing pH values, the emulsion became unstable or the emulsion separated. This could be mainly because the excess of positive ions compresses the double electron layer. The experimental results showed that PVA as a macromolecular matrix material has a great application potential for the emulsification process.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2029
Author(s):  
Wedad Albalawi ◽  
Rabia Jahangir ◽  
Waqas Masood ◽  
Sadah A. Alkhateeb ◽  
Samir A. El-Tantawy

The propagation of electron-acoustic waves (EAWs) in an unmagnetized plasma, comprising (r,q)-distributed hot electrons, cold inertial electrons, and stationary positive ions, is investigated. Both the unmodulated and modulated EAWs, such as solitary waves, rogue waves (RWs), and breathers are discussed. The Sagdeev potential approach is employed to determine the existence domain of electron acoustic solitary structures and study the perfectly symmetric planar nonlinear unmodulated structures. Moreover, the nonlinear Schrödinger equation (NLSE) is derived and its modulated solutions, including first order RWs (Peregrine soliton), higher-order RWs (super RWs), and breathers (Akhmediev breathers and Kuznetsov–Ma soliton) are presented. The effects of plasma parameters and, in particular, the effects of spectral indices r and q, of distribution functions on the characteristics of both unmodulated and modulated EAWs, are examined in detail. In a limited cases, the (r,q) distribution is compared with Maxwellian and kappa distributions. The present investigation may be beneficial to comprehend and predict the modulated and unmodulated electron acoustic structures in laboratory and space plasmas.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 87
Author(s):  
Aleksey A. Mavrin ◽  
Alexander V. Demura

The approximate solution of the nonlinear Thomas–Fermi (TF) equation for ions is found by the Fermi method. The solution is based on the new asymptotic representation of the TF ion size valid for any ionization degree. The two universal functions and their derivatives, introduced by Fermi, are calculated by recent effective algorithms for the Emden–Fowler type equations with the accuracy sufficient for majority of applications. The comparison of our results with those obtained previously shows high accuracy and validity for arbitrary values of ionization degree. This study could potentially be of interest for the statistical TF method applications in physics and chemistry.


2021 ◽  
pp. 18-25
Author(s):  
Igor Karpov ◽  
◽  
Anatoly Ushakov ◽  
Leonid Fedorov ◽  
Elena Goncharova ◽  
...  

A model has been developed for studying the features of the thermal interaction of molecular oxygen in the near-surface condensation layer in the plasma of a low-pressure arc discharge. It was found that the input power and pressure of the gas mixture exert the main influence on the electron temperature and on the density of positive ions (O_2^+ and O+). It is shown that at a fixed pressure, the ion density increases with an increase in the power of the system, and vice versa.


2021 ◽  
Author(s):  
Yasumasa Okazaki ◽  
Kanako Sasaki ◽  
Nanami Ito ◽  
Hiromasa Tanaka ◽  
Ken-Ichiro Matsumoto ◽  
...  

Abstract Non-thermal plasma (NTP) devices have been explored for medical applications. NTP devices discharge electrons, positive ions, ultraviolet, and reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as the hydroxyl radical (●OH), singlet oxygen (1O2), superoxide (O2●−), hydrogen peroxide (H2O2), ozone, and nitric oxide, at near-physiological temperature. At preclinical stages or in human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral, and biofilm-related infections, wound healing, and cancer cell death. Here, we observed that ferric, vanadium, and gold(III) ions, measured by 2-thiobarbituric acid-reactive substances (TBARS) in combination with NTP exposure, significantly elevated lipid peroxidation. Using 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO) as a spin probe in electron paramagnetic resonance (EPR), we observed that tetrachloroaurate (III) yielded an M4PO-X spin adduct. Tetrachloroaurate-induced oxidation was attenuated efficiently by reduced (GSH) and oxidized glutathione (GSSG), while glycine (Gly) and L-glutamate (Glu), components of GSH, were ineffective. Furthermore, GSH and GSSG efficiently suppressed tetrachloroaurate-induced lipid peroxidation, while Gly and Glu were ineffective in suppressing TBARS elevation. These results indicate that tetrachloroaurate-induced oxidation is attenuated by GSH as well as GSSG. Further studies are warranted to elucidate the redox reactions between metal ions and biomolecules to advance the clinical application of NTP.


Sign in / Sign up

Export Citation Format

Share Document