Elektronentransfer und Kontaktionen-Bildung, 42 [1,2] Cyclovoltammetrische und ESR / ENDOR-Untersuchungen der Einelektronen-Reduktion von Diphenochinonen / Electron Transfer and Contact Ion Pair Formation, 42 [1,2] Cyclovoltammetric and ESR / ENDOR Investigations of the One-Electron Reduction of Diphenoquinones

1995 ◽  
Vol 50 (11) ◽  
pp. 1699-1716
Author(s):  
Andreas John ◽  
Hans Bock

Semiquinone radical anions are prototype compounds for contact ion pair formation with metal counter cations. In order to investigate the still open question whether bulky alkyl groups can sterically interfere, diphenoquinone derivatives O=C(RC=CH)2C=C(HC=CR)2C=O with R = C(CH3)3, CH(CH3)2 and CH3 have been selected and the following ESR/ENDOR results are obtained for the alkaline metal cations: The tetrakis(tert-butyl)-substituted radical anion only adds Li⊕ and Na⊕, while K⊕ forms no ion pair. The 3,3ʹ,5,5ʹ-tetra(isopropyl)diphenoquinone radical anion is accessible to all cations Me⊕, although Rb⊕ and Cs⊕ seem to be present solvent-separated in solution. The tetramethyl-substituted radical anion unfortunately polymerizes rapidly. Additional information concerns the ESR/ENDOR proof for ion triple radical cation formation [Li⊕ M•⊖Li⊕]•⊕, or the difference in the coupling constants upon Me⊕ docking at one δ⊖O=C group, suggesting that about 87% of the spin density is located in the cation-free molecular half of the diphenoquinone radical anion. Based on the wealth of ESR/ENDOR information, crystallization of the contact ion pairs and their structural characterization should be attempted.

2017 ◽  
Vol 19 (16) ◽  
pp. 10481-10490 ◽  
Author(s):  
Ellen M. Adams ◽  
Bethany A. Wellen ◽  
Raphael Thiraux ◽  
Sandeep K. Reddy ◽  
Andrew S. Vidalis ◽  
...  

Theory and experiments show that ion-pair formation drives adsorption of deprotonated fatty acids to the interface.


1996 ◽  
Vol 51 (9) ◽  
pp. 1222-1228 ◽  
Author(s):  
Hans Bock ◽  
Markus Kleine

UV/VIS and ESR spectra of electron transfer reaction products in aprotic (cH⊕ < 0,1 ppm) solution can be measured in an especially designed and sealed glass apparatus and provide information on unknown facets of the microscopic pathway through the network of interdependent equilibria. For tetraphenyl-p-benzoquinone in tetrahydrofuran, single-electron reduction by a sodium metal mirror produces a red solution and, unexpectedly, after addition of 2.2.2. cryptand, contact with a potassium metal mirror generates a green (!) one. For both, ESR/ENDOR spectra prove the presence of tetraphenyl-p-benzoquinone radical anion. UV/VIS measurements provide the clue: In the equilibrium revealed by repetetive spectra recording, M·⊖solv + Me⊕solv ⇄ [M·⊖···Me⊖]solv, the radical anion is green (vm = 16900 cm-1) and the contact ion pair red (vm=18900 cm-1 ). On ion pair formation, therefore, the excitation energy of the radical anion increases by 0.25 eV.


2009 ◽  
Vol 121 (33) ◽  
pp. 6252-6256 ◽  
Author(s):  
Mark R. Antonio ◽  
May Nyman ◽  
Travis M. Anderson

1977 ◽  
Vol 30 (4) ◽  
pp. 741 ◽  
Author(s):  
DG Oakenfull ◽  
DE Fenwick

.In the mixed solvent, 0.1 mole fraction ethanol-water, long-chain decyltrimethylammonium carboxylates form ion pairs. Ion-pair association constants (and hence the free energy of ion-pair formation) can be measured conductometrically. It is possible to separate the hydrophobic from the electrostatic contribution to the free energy of ion-pair formation by systematically varying the hydrocarbon chain length. We report measurements of the free energy of hydrophobic interaction (ΔG°HI) over the temperature range 278-328 K. The value of ΔG°HI becomes more negative (stronger hydrophobic interaction) with increasing temperature. The temperature coefficient of ΔG°HI was used to calculate the enthalpy (ΔH°HI) and entropy (ΔS°HI) of hydrophobic interaction. At low temperature the entropic contribution to the free energy is the larger but ΔH°HI, dominates at temperatures above c. 324 K. The volume change of hydrophobic interaction was similarly estimated from the volume change of ion-pair formation. We obtained values of apparent molar volume of the decyltrimethylammonium carboxylates (over a range of concentrations) from very precise density measurements. These could then be combined with the appropriate ion-pair association constant (from the conductance measurements) to give the partial molar volumes of the free ions and the ion pair. Hydrophobic interaction was found to be accompanied by a substantial increase in volume amounting to 10.2 ± 0.3 ml mol-1 for each pair of interacting methylene groups. Our results support the view that hydrophobic interaction occurs with a further ordering of water molecules over and above that which exists in the hydrophobic hydration layer surrounding an isolated hydrophobic molecule.


Sign in / Sign up

Export Citation Format

Share Document