1,1-Organoboration of Sterically Hindered Tetra-l-alkynylsilanes and the Crystal Structure of Tetrakis[1-(3,3-dimethyl)butynyl]silane

1996 ◽  
Vol 51 (9) ◽  
pp. 1320-1324 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Heidi E. Maisei ◽  
Jürgen Süß ◽  
Wolfgang Milius

Tetra-1-alkynylsilanes, Si(C≡CR1)4 with R1 = tBu (1) and SiMe3 (2) react with triethylborane, Et3B. by intermolecular 1,1-ethyloboration followed by intramolecular 1,1-vinyloboration, to give the substituted siloles 3 and 5 with two R1C≡C groups linked to silicon. The formation of 5 (R1 = SiMe3) requires exactly one equivalent of Et3B, whereas 3 (R1 = tBu) is formed after ≈ 20 d in boiling toluene in the presence of a large excess of Et3B, and the remaining tBu -C ≡ C groups in 3 do not react with Et3B. The 1,1-organoboration of 2 using one equivalent of 9-ethyl-9-borabicyclo[3.3.1]nonane, Et-9-BBN, proceeds similar to the Et3B-reaction, to give mainly the silole derivative 6, in which the bicyclic ring system is enlarged by two carbon atoms. This product is the result of a kinetically controlled reaction. The single crystal X-ray analysis of 1 has been carried out (space group Pnma; a = 990.0(2), b = 1668.0(3), c = 1479.0(3) pm), and its crystal structure is com pared with that of the corresponding tin compound 1 (Sn).

Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


2002 ◽  
Vol 57 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Beatriz S. Parajón-Costaa ◽  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Eduardo E Castellano

The crystal structure of [Cu(sac)2(nic)2(H2O)] (sac = saccharinate anion; nic = nicotinamide) has been determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c with Z = 4 and the Cu(II) ion presents a CuN4O square pyramidal coordination. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed.


1988 ◽  
Vol 43 (4) ◽  
pp. 497-498
Author(s):  
Franz A. Mautner ◽  
Harald Krischner ◽  
Christoph Kratky

Abstract The crystal structure of Rb2Ca(N3)4 · 4H2O has been determined by single crystal X-ray methods. The compound is isotypic with K2Ca(N3)4 · 4 H2O and crystallizes in the orthorhombic space group Ccca, Z = 4, a = 1949.1(12) pm, b = 1099.5(3) pm, c - 622.2(1) pm.


2019 ◽  
Vol 289 ◽  
pp. 77-81
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Katarzyna Pasinska ◽  
Marta Demchyna ◽  
Roman E. Gladyshevskii

The new ternary silicide Dy3Ni11.83(1)Si3.98(1)was synthesized from the elements by arc-melting and its crystal structure was determined by X-ray single-crystal diffraction. The compound crystallizes in a Sc3Ni11Ge4-type structure: Pearson symbolhP38, space groupP63/mmc(No. 194),a= 8.1990(7),c= 8.6840(7) Å,Z= 2;R= 0.0222, wR= 0.0284 for 365 reflections. The structure belongs to a large family of structures related to the EuMg5.2type, with representatives among ternary aluminides, silicides, germanides,etc.


2007 ◽  
Vol 62 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Hansjürgen Mattausch ◽  
Constantin Hoch ◽  
Arndt Simon

Monophasic La6C2Br9 was prepared by heating a mixture of LaBr3, lanthanum metal and carbon in a molar ratio of 3 : 3 : 2 at 840 °C for 5 d. The crystal structure was investigated by X-ray single crystal diffraction (space group C2/c, a = 14.234(3), b = 10.858(2), c = 14.588(3) Å , β = 106.80(3) °). In the structure the La atoms form edge-sharing double tetrahedra. The La tetrahedra are centered by single carbon atoms. The yellow crystals of La6C2Br9 are transparent and electrically insulating.


2019 ◽  
Vol 74 (4) ◽  
pp. 381-387
Author(s):  
Michael Zoller ◽  
Jörn Bruns ◽  
Gunter Heymann ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractA potassium tetranitratopalladate(II) with the composition K2[Pd(NO3)4] · 2HNO3 was synthesized by a simple solvothermal process in a glass ampoule. The new compound crystallizes in the monoclinic space group P21/c (no. 14) with the lattice parameters a = 1017.15(4), b = 892.94(3), c = 880.55(3) Å, and β = 98.13(1)° (Z = 2). The crystal structure of K2[Pd(NO3)4] · 2HNO3 reveals isolated complex [Pd(NO3)4]2− anions, which are surrounded by eight potassium cations and four HNO3 molecules. The complex anions and the cations are associated in layers which are separated by HNO3 molecules. K2[Pd(NO3)4] · 2HNO3 can thus be regarded as a HNO3 intercalation variant of β-K2[Pd(NO3)4]. The characterization is based on single-crystal X-ray and powder X-ray diffraction.


1990 ◽  
Vol 43 (11) ◽  
pp. 1861 ◽  
Author(s):  
TW Hambley ◽  
A Poiner ◽  
WC Taylor

From the deep violet, encrusting marine sponge Chelonaplysilla violacea, two rearranged spongian diterpenes, aplyviolene, (1R*,1′S*,3?aR*,5R*,6R*,8R*,8′aS*)-3-oxo-8-(1′,4′,4′-trimethyl-8′-methylenedecahydroazulen-1′-yl)-2,7-dioxabicyclo[3.2.1]oct-6-yl acetate (1), the acetoxy derivative, aplyviolacene (2), (5R*,8S*,9S*,10R*,13S*,14R* ,15S*,16R*)-spongian-15,16-diyl diacetate (3) and (5R*,8S*,9S*,10R*,13S*,14R*)-spongian-16-one (4) were isolated. The structures were determined by spectroscopic methods, and the structure of aplyviolene was confirmed by a single-crystal X-ray determination. The crystal structure was refined to a residual of 0.036 for 1125 independent observed reflections. The crystals were orthorhombic, space group P212121 with a 8.098(1), b 11.628(1), c 21.774(3)Ǻ.


Sign in / Sign up

Export Citation Format

Share Document