ir spectrum
Recently Published Documents


TOTAL DOCUMENTS

744
(FIVE YEARS 65)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Vol 130 (3) ◽  
pp. 369
Author(s):  
В.В. Павлова ◽  
Е.С. Петухова ◽  
Т.А. Исакова ◽  
Е.С. Колесова ◽  
А.А. Чириков ◽  
...  

The structure of mammoth tusk was investigated by infrared spectroscopy, including after heat treatment. The whole complex of functional groups of the tusk components - hydroxyapatite, collagen and water - was revealed. It was found that collagen in the IR spectrum is represented mainly by characteristic absorption bands of amide and aliphatic groups. After heat treatment at 600 °C, the organic part is completely removed from the sample. It was found that hydroxyapatite in mammoth tusk is presented in a carbonate-substituted form, however, heat treatment at 900 °C leads to the removal of carbonate anion and water from the sample, which is accompanied by the transition of hydroxyapatite from the nonstoichiometric state to the stoichiometric state.


Author(s):  
Andrey D. PLOTNIKOV ◽  
Aleksandr V. VODOLAZHSKIY ◽  
Natalya S. YAKUPOVA

The paper represents requirements for cryogenic grease lubricants used in the rocket and space technology. Data on lubricants based on perfluoropolyether liquid FEN is provided. New lubricant testing methods enabling to analyze their chemical composition and low-temperature characteristics are proposed. Quoted are investigation results for the equivalents of previously used cryogenic lubricants NIKA, NIRA and «Ametist». A practical relevance of the paper has been proven by introduction of low-temperature lubricants «Sever» currently being used in rocket and space items, as well аs successful application of the developed lubricant incoming inspection procedures at RSC Energia. Key words: low-temperature lubricant, perfluoropolyether liquid FEN, viscosity, solidification temperature, IR spectrum, potential evaporation.


Author(s):  
wu ruiqing ◽  
Long Mengqiu ◽  
Zhang Xiaojiao ◽  
Wang Yunpeng ◽  
Yao Mengli ◽  
...  

Abstract The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium (ISM). However, there is a lack of corresponding experimental data and model theories. By theoretical calculations based on ab-initio method, we have predicted and geometry optimized the structures of Carbon-rich (C-rich) dusts, carbon (12C), iron carbide (FeC), silicon carbide (SiC), even silicon (28Si), iron (56Fe), and investigated the optical absorption coefficients and emission coefficients of these materials in 0D (zero−dimensional), 1D, and 2D nanostructures. Comparing the nebular spectra of the supernovae (SN) with the coefficient of dust, we find that the optical absorption coefficient of the 2D 12C, 28Si, 56Fe, SiC and FeC structure corresponds to the absorption peak displayed in the infrared band (5−8) µm of the spectrum at 7554 days after the SN1987A explosion. And it also corresponds to the spectrum of 535 days after the explosion of SN2018bsz, when the wavelength in the range of (0.2−0.8) and (3−10) µm. Nevertheless, 2D SiC and FeC corresponds to the spectrum of 844 days after the explosion of SN2010jl, when the wavelength is within (0.08−10) µm. Therefore, FeC and SiC may be the second type of dust in SN1987A corresponding to infrared band (5−8) µm of dust and may be in the ejecta of SN2010jl and SN2018bsz. The nano−scale C−rich dust size is ∼ 0.1 nm in SN2018bsz, which is 3 orders of magnitude lower than the value of 0.1 µm. In addition, due to the ionization reaction in the supernova remnant (SNR), we also calculated the Infrared Radiation (IR) spectrum of dust cations. We find that the cation of the 2D layered (SiC)2+ has a higher IR spectrum than those of the cation (SiC)1+ and neutral (SiC)0+.


2021 ◽  
Vol 8 ◽  
Author(s):  
Victor A. Lorenz-Fonfria ◽  
Kiyoshi Yagi ◽  
Shota Ito ◽  
Hideki Kandori

Fundamental vibrations of the chromophore in the membrane protein bacteriorhodopsin (BR), a protonated Schiff base retinal, have been studied for decades, both by resonance Raman and by infrared (IR) difference spectroscopy. Such studies started comparing vibrational changes between the initial BR state (all-trans retinal) and the K intermediate (13-cis retinal), being later extended to the rest of intermediates. They contributed to our understanding of the proton-pumping mechanism of BR by exploiting the sensitivity of fundamental vibrational transitions of the retinal to its conformation. Here, we report on new bands in the 2,500 to 1,800 cm−1 region of the K-BR difference FT-IR spectrum. We show that the bands between 2,500 and 2,300 cm−1 originate from overtone and combination transitions from C-C stretches of the retinal. We assigned bands below 2,300 cm−1 to the combination of retinal C-C stretches with methyl rocks and with hydrogen-out-of-plane vibrations. Remarkably, experimental C-C overtone bands appeared at roughly twice the wavenumber of their fundamentals, with anharmonic mechanical constants ≤3.5 cm−1, and in some cases of ∼1 cm−1. Comparison of combination and fundamental bands indicates that most of the mechanical coupling constants are also very small. Despite the mechanical quasi-harmonicity of the C-C stretches, the area of their overtone bands was only ∼50 to ∼100 times smaller than of their fundamental bands. We concluded that electrical anharmonicity, the second mechanism giving intensity to overtone bands, must be particularly high for the retinal C-C stretches. We corroborated the assignments of negative bands in the K-BR difference FT-IR spectrum by ab initio anharmonic vibrational calculations of all-trans retinal in BR using a quantum-mechanics/molecular mechanics approach, reproducing reasonably well the small experimental anharmonic and coupling mechanical constants. Yet, and in spite accounting for both mechanical and electrical anharmonicities, the intensity of overtone C-C transitions was underestimated by a factor of 4–20, indicating room for improvement in state-of-the-art anharmonic vibrational calculations. The relatively intense overtone and combination bands of the retinal might open the possibility to detect retinal conformational changes too subtle to significantly affect fundamental transitions but leaving a footprint in overtone and combination transitions.


2021 ◽  
Vol 29 (26) ◽  
pp. 42911
Author(s):  
Muhammad Ashar Naveed ◽  
Rana Muhammad Hasan Bilal ◽  
Muhammad Abuzar Baqir ◽  
Muhammad Mehran Bashir ◽  
Muhammad Mahmood Ali ◽  
...  

2021 ◽  
Vol 2091 (1) ◽  
pp. 012015
Author(s):  
A E Krasnov ◽  
D Yu Ryzhkova ◽  
V A Vagin

Abstract Methodology for the analysis of concentrations of gaseous composite of atmosphere by the corresponding infrared (IR) spectrum, measured with the help of trajectory spectroradiometers (TSR) is observed. The developed algorithm for mathematical processing of the measurement results is briefly described, including the detection and estimation of the concentrations of the sought gases using the notch filtration of their spectral components, which makes it possible to significantly reduce the concentration identification error. The spectra of various substances in the mid-IR range are considered, and the results of approbation of the technique based on the TSR model with an external high-temperature radiation source on a 1 m path are presented.


Author(s):  
Sonjae Wallace ◽  
Samuel G. Lambrakos ◽  
Andrew Shabaev ◽  
Lou Massa
Keyword(s):  

Heliyon ◽  
2021 ◽  
pp. e08204
Author(s):  
Mouna Medimagh ◽  
Noureddine Issaoui ◽  
Sofian Gatfaoui ◽  
Silvia Antonia Brandán ◽  
Omar Al-Dossary ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1146
Author(s):  
Victor Yavna ◽  
Tatiana Nazdracheva ◽  
Andrey Morozov ◽  
Yakov Ermolov ◽  
Andrei Kochur

The hydration of the basal surfaces of kaolinite is studied by theoretical methods. The cluster method was used to simulate the positions of atoms. The positions of the atoms of the basal surfaces of dry and hydrated minerals are optimized by minimizing the total energy in the Hartree–Fock approximation. The adsorption energies of water molecules were calculated taking into account the fourth-order correlation corrections of Møller–Plesset perturbation theory. The formation of the IR spectrum of kaolinite in the range of wave numbers 2500–4500 cm−1 is studied. The experimentally observed effect of the change in relative intensity and position of the band with a change in the moisture content of the sample is interpreted.


Sign in / Sign up

Export Citation Format

Share Document