scholarly journals CRYSTAL STRUCTURE OF THE NEW SILICIDE Lu3Ni11.74(2)Si4

2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.

2019 ◽  
Vol 289 ◽  
pp. 77-81
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Katarzyna Pasinska ◽  
Marta Demchyna ◽  
Roman E. Gladyshevskii

The new ternary silicide Dy3Ni11.83(1)Si3.98(1)was synthesized from the elements by arc-melting and its crystal structure was determined by X-ray single-crystal diffraction. The compound crystallizes in a Sc3Ni11Ge4-type structure: Pearson symbolhP38, space groupP63/mmc(No. 194),a= 8.1990(7),c= 8.6840(7) Å,Z= 2;R= 0.0222, wR= 0.0284 for 365 reflections. The structure belongs to a large family of structures related to the EuMg5.2type, with representatives among ternary aluminides, silicides, germanides,etc.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


2021 ◽  
Vol 76 (3-4) ◽  
pp. 243-247
Author(s):  
Bohdana Belan ◽  
Tamara J. Bednarchuk ◽  
Vasyl Kinzhybalo ◽  
Mariya Dzevenko ◽  
Svitlana Pukas ◽  
...  

Abstract The intermetallic compound LaNi11.8–11.4Si1.2–1.6 was synthesized by arc-melting and its crystal structure was determined using powder and single-crystal X-ray diffraction data. The compound adopts the cubic CaCu6.5Al6.5-type structure (space group Fm 3 ‾ $\bar{3}$ c, Pearson code cF112, Z = 8), which is a partially ordered ternary derivative of the NaZn13 type: a = 11.256(4) Å, V = 1426.1(15) Å3, R = 0.0133, wR = 0.0285 for 93 reflections with I > 2 σ(I) for LaNi11.4Si1.6; a = 11.25486(8) Å, V = 1425.68(2) Å3, R p = 4.17%, R wp = 5.85%, R B = 3.44% for LaNi11.8Si1.2. One of its crystallographic positions (96i) is occupied by a mixture of Ni and Si atoms. The structure of this new silicide can be represented as a packing of Ni-centered icosahedra and La-centered snub cubes, which are packed in a CsCl-related manner.


2020 ◽  
Vol 75 (3) ◽  
pp. 303-307
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Yaroslav Kalychak

AbstractThe intermetallic compound SmNi5.2Mn6.8 was synthesized by arc-melting and its crystal structure has been determined using single-crystal X-ray diffraction data. The compound adopts the tetragonal structure type ThMn12: space group I4/mmm, Pearson code tI26, Z = 2; a = 8.6528(3), c = 4.8635(3) Å; R1 = 0.0175, wR2 = 0.0372, 171 F2 values, 17 refined variables. The two crystallographic positions 8f and 8j in the structure of SmNi5.2Mn6.8 are occupied by a mixture of Mn and Ni atoms.


2008 ◽  
Vol 63 (8) ◽  
pp. 929-933 ◽  
Author(s):  
Volodymyr Babizhetskyy ◽  
Hansjürgen Mattausch ◽  
Arndt Simon

The title compound was prepared from the elements by arc-melting followed by annealing in silica tubes at 1270 K for one week. The crystal structure was investigated by means of single-crystal X-ray diffraction: space group Cmmm, a = 3.412(1), b = 13.699(8), c = 3.669(1) Å, V = 171.5(1) Å3, Z = 2, R1 = 0.032; wR2 = 0.087 for 123 unique reflections with Io ≥ 2σ (Io) and 11 refined parameters.


Author(s):  
J. V. Pacheco ◽  
K. Yvon ◽  
E. Gratz

AbstractThe title compounds were reinvestigated by single crystal X-ray diffraction. They crystallize with the ordered NdPtSb type structure (space group


Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


2002 ◽  
Vol 57 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Beatriz S. Parajón-Costaa ◽  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Eduardo E Castellano

The crystal structure of [Cu(sac)2(nic)2(H2O)] (sac = saccharinate anion; nic = nicotinamide) has been determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c with Z = 4 and the Cu(II) ion presents a CuN4O square pyramidal coordination. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed.


Sign in / Sign up

Export Citation Format

Share Document