The Secondary Structure of Proteins in the Thylakoid Membrane

1973 ◽  
Vol 28 (3-4) ◽  
pp. 128-130 ◽  
Author(s):  
Wilhelm Menke ◽  
Rolf-Dieter Hirtz

With reference spectra derived from proteins of known structure (CHEN, YANG, and MARTINEZ, Biochemistry 11, 4120 [1972]) a better approximation of the circular dichroism spectrum of fragments of the thylakoid membrane is achieved, than by the use of polylysine as reference substance. Most probably the protein in the thylakoid membrane consists of 40 per cent helix, 42 per cent random coil and 18 per cent β-structure.

1988 ◽  
Vol 4 (4) ◽  
pp. 479-482 ◽  
Author(s):  
Luis Menéndez-Arias ◽  
Julián Gómez-Gutiérrez ◽  
Miguel García-Ferrández ◽  
Alvaro García-Tejedor ◽  
Federico Morán

2021 ◽  
Vol 43 (2) ◽  
pp. 58-64
Author(s):  
Alison Rodger ◽  
Doug Marshall

Circular dichroism (CD) is used to give information about the chirality or handedness of molecular systems. It is particularly widely applied to determine the secondary structure of proteins such as biopharmaceutical products.


1980 ◽  
Vol 35 (5-6) ◽  
pp. 367-375 ◽  
Author(s):  
Elisabeth Langer ◽  
Harald Lehner ◽  
Wolfhart Rüdiger ◽  
Barbara Zickendraht-Wendelstadt

Abstract An extensive study of the chiroptical properties of C-phycoerythrin and the α-and β-subunits in the spectral region from 700 -200 nm is presented. Based on the VIS-circular dichroism inherently chiral conform ations are proposed for the co­ valently linked chromophores. By means of mean residue ellipticities and the experimental circular dichroism spectra in the region of the n → π* peptide transition the a-helix contents of the apoproteins of the ac-and ß-subunits are estimated to amount to 60% and 40%, respectively. The circular dichroism spectrum of native C-phycoerythrin is congruent with a linear superposition of the α-and β-subspectra, in the whole spectral region studied. Since a-and β-subunits are associated in native C-phycoery-thrin as revealed by sedim entation analysis the interactions between the subunits in the native chromoprotein are not accom panied by substantial conform ational changes. In the temperature range 0°-40°C the thermally induced changes of the chrom ophores in native C-phycoerythrin are not associated with changes of the secondary structure of the apoprotein. Unfolding occurs at 60°-70°C but slowly leads to irreversible denaturation. Protein unfolding starts at 3 M urea. The random coil secondary structure of the apoproteins is reached at 8 M urea. At this concentration the absorbance and the optical activity of the chrom o­ phores are reduced by a factor 3 and 10, respectively. The conformational changes in the peptide with increasing denaturant concentration are not synchronous with those induced in the Chromo­ phore indicating that a m ultistep process is operative during unfolding. The C D results on dena­ turation are supplem ented by absorption and em ission spectroscopy.


Author(s):  
John P. Robinson ◽  
J. David Puett

Much work has been reported on the chemical, physical and morphological properties of urinary Tamm-Horsfall glycoprotein (THG). Although it was once reported that cystic fibrotic (CF) individuals had a defective THG, more recent data indicate that THG and CF-THG are similar if not identical.No studies on the conformational aspects have been reported on this glycoprotein using circular dichroism (CD). We examined the secondary structure of THG and derivatives under various conditions and have correlated these results with quaternary structure using electron microscopy.THG was prepared from normal adult males and CF-THG from a 16-year old CF female by the method of Tamm and Horsfall. CF female by the method of Tamm and Horsfall.


2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


Sign in / Sign up

Export Citation Format

Share Document