Different Effect Of Dgtp On 2'-Deoxyadenosine Metabolism In Mitochondria And Cytosol

1992 ◽  
Vol 47 (11-12) ◽  
pp. 893-897 ◽  
Author(s):  
Janusz Greger ◽  
Fabianowska-Majewska Krystyna

Two enzymes participating in 2′-deoxyadenosine (dAdo) metabolism: dAdo kinase (dAdoK EC 2.7.1.76) and adenosine deaminase (ADA, EC 3.5.4.4) were partially purified from rat liver mitochondria and cytosol and influence of nucleosides and nucleotides on the activity of these enzymes were investigated. Mitochondrial and cytosol dAdoK are separate proteins, while ADA from both subcellular fractions possesses similar physical properties. dGTP, a com petitive inhibitor of mitochondrial dAdoK, inhibits cytosol ADA in a mixed way but activates mitochondrial ADA and cytosol dAdoK. A possible effect of dGTP on dAdo metabolism in mitochondria and cytosol is discussed

1993 ◽  
Vol 71 (3-4) ◽  
pp. 183-189 ◽  
Author(s):  
Amy Y. P. Mok ◽  
Gordon E. McDougall ◽  
William C. McMurray

CDP-diacylglycerol for polyglycerophosphatide biogenesis can be synthesized within rat liver mitochondria. Contamination by microsomal membranes cannot account for the CDP-diacylglycerol synthesis found in the mitochondria. Phosphatidic acid from egg lecithin was the best substrate for the synthesis of CDP-diacylglycerol in both subcellular fractions. Concentration curves for CTP and Mg2+ differed for the two subcellular fractions. Microsomal CDP-diacylglycerol synthase was specifically stimulated by the nucleotide GTP; this stimulatory effect by GTP was not observed in the mitochondrial fraction. By comparison, the microsomal enzyme was more sensitive towards sulfhydryl inhibitors than the mitochondrial enzyme. The enzymes could be solubilized from the membrane fractions using 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate, and the detergent-soluble activity could be partially restored by addition of phospholipids. Based on the differences in properties, it was concluded that there are two distinct enzyme localizations for CDP-diacylglycerol synthesis in mitochondria and microsomes from rat liver.Key words: CDP-diacylglycerol, synthase, phosphatidic acid, mitochondria, microsomes, solubilization.


1990 ◽  
Vol 68 (12) ◽  
pp. 1380-1392 ◽  
Author(s):  
Amy Y. P. Mok ◽  
William C. McMurray

The acyltransferases that catalyze the synthesis of phosphatidic acid from labelled sn-[14C]glycero-3-phosphate and fatty acyl carnitine or coenzyme A derivatives have been shown to be present in both isolated mitochondria and microsomes from rat liver. The major reaction product was phosphatidic acid in both subcellular fractions. A small quantity of lysophosphatidic acid and neutral lipids were produced as by-products. Divalent cations had significant effects on both mitochondrial and microsomal fractions in stimulating acylation using palmitoyl CoA, but not when palmitoyl carnitine was used as the acyl donor. Palmitoyl CoA and palmitoyl carnitine could be used for acylation by both mitochondria and microsomes. Mitochondria were more permeable to palmitoyl carnitine and readily used it as the substrate for acylation. On the other hand, microsomes yielded a better rate with palmitoyl CoA and the rate of acylation from palmitoyl carnitine in microsomes was correlated with the degree of mitochondrial contamination. The enzymes were partially purified from Triton X-100 extracts of subcellular fractions. Based on the differences of substrate utilization, products formed, divalent cation effects, molecular weights, and polarity, the mitochondrial and microsomal acyltransferases appeared to be different enzymes.Key words: glycerophosphate, acyltransferase, mitochondria, microsomes, phosphatidic acid.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
Olga A. Gonchar ◽  
Valentina I. Nosar ◽  
Larisa. V. Bratus ◽  
I. N. Tymchenko ◽  
N. N. Steshenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document