neutral lipids
Recently Published Documents


TOTAL DOCUMENTS

1078
(FIVE YEARS 217)

H-INDEX

63
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yujie Zhu ◽  
Shucheng Liu ◽  
Fengfeng Mei ◽  
Meihui Zhao ◽  
Guanghua Xia ◽  
...  

Osteoporosis is a global health problem, and it is of great significance to replace the drugs with natural functional factors. In this study, we investigated the antiosteoporotic activity of lipids prepared from Tilapia nilotica fish head lipids (THLs) in the ovariectomized osteoporosis rats. THLs are composed of neutral lipids (NL, 77.84%), phospholipids (PL, 11.86%), and glycolipids (GL, 6.47%). There were apparent differences in the fatty acid composition of disparate components, and PL contains the most abundant Ω-3 polyunsaturated fatty acids. The results proved that THLs could improve bone microstructure, increase bone mineral density, and decrease bone resorption. To illustrate the antiosteoporotic mechanism, we analyzed the changes in gut microbial communities, proinflammation factors, serum metabolites, and metabolic pathways. Further study on gut microbiota showed that THLs significantly decreased the content of Alistipes in the gut and dramatically increased the beneficial bacteria such as Oscillospira, Roseburia, and Dubosiella. Meanwhile, proinflammation factors of serum in OVX rats decreased significantly, and metabolites were changed. Therefore, we speculated that THLs improved bone loss through reducing inflammation and changing the metabolites and metabolic pathways such as arachidonic acid metabolism and primary bile acid metabolism, etc., by altering gut microbiota. The results indicated that THLs could be a functional factor with antiosteoporotic activity.


2022 ◽  
Vol 52 (1) ◽  
Author(s):  
Rafael de Araújo Lira ◽  
Lucas de Paula Corrêdo ◽  
Jimmy Soares ◽  
Mariana Machado Rocha ◽  
Antonio Teixeira de Matos ◽  
...  

ABSTRACT: The harvesting process is a current challenge for the commercial production of microalgae because the biomass is diluted in the culture medium. Several methods have been proposed to harvest microalgae cells, but there is not a consensus about the optimum method for such application. Herein, the methods based on sedimentation, flocculation, and centrifugation were evaluated on the recovery of Chlorella sorokiniana BR001 cultivated in a low-nitrogen medium. C. sorokiniana BR001 was cultivated using a low-nitrogen medium to trigger the accumulation of neutral lipids and neutral carbohydrates. The biomass of C. sorokiniana BR001 cultivated in a low-nitrogen medium showed a total lipid content of 1.9 times higher (23.8 ± 4.5%) when compared to the biomass produced in a high-nitrogen medium (12.3 ± 1.2%). In addition, the biomass of the BR001 strain cultivated in a low-nitrogen medium showed a high content of neutral carbohydrates (52.1 ± 1.5%). The natural sedimentation-based process was evaluated using a sedimentation column, and it was concluded that C. sorokiniana BR001 is a non-flocculent strain. Therefore, it was evaluated the effect of different concentrations of ferric sulfate (0.005 to 1 g L-1) or aluminum sulfate (0.025 to 0.83 g L-1) on the flocculation process of C. sorokiniana BR001, but high doses of flocculant agents were required for an efficient harvest of biomass. It was evaluated the centrifugation at low speed (300 to 3,000 g) as well, and it was possible to conclude that this process was the most adequate to harvest the non-flocculent strain C. sorokiniana BR001.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Martina Hüttl ◽  
Irena Markova ◽  
Denisa Miklankova ◽  
Iveta Zapletalova ◽  
Martin Poruba ◽  
...  

The combination of plant-derived compounds with anti-diabetic agents to manage hepatic steatosis closely associated with diabetes mellitus may be a new therapeutic approach. Silymarin, a complex of bioactive substances extracted from Silybum marianum, evinces an antioxidative, anti-inflammatory, and hepatoprotective activity. In this study, we investigated whether metformin (300 mg/kg/day for four weeks) supplemented with micronized silymarin (600 mg/kg/day) would be effective in mitigating fatty liver disturbances in a pre-diabetic model with dyslipidemia. Compared with metformin monotherapy, the metformin–silymarin combination reduced the content of neutral lipids (TAGs) and lipotoxic intermediates (DAGs). Hepatic gene expression of enzymes and transcription factors involved in lipogenesis (Scd-1, Srebp1, Pparγ, and Nr1h) and fatty acid oxidation (Pparα) were positively affected, with hepatic lipid accumulation reducing as a result. Combination therapy also positively influenced arachidonic acid metabolism, including its metabolites (14,15-EET and 20-HETE), mitigating inflammation and oxidative stress. Changes in the gene expression of cytochrome P450 enzymes, particularly Cyp4A, can improve hepatic lipid metabolism and moderate inflammation. All these effects play a significant role in ameliorating insulin resistance, a principal background of liver steatosis closely linked to T2DM. The additive effect of silymarin in metformin therapy can mitigate fatty liver development in the pre-diabetic state and before the onset of diabetes.


2021 ◽  
Author(s):  
Angela Criscuolo ◽  
Palina Nepachalovich ◽  
Diego Fernando Garcia-del Rio ◽  
Mike Lange ◽  
Zhixu Ni ◽  
...  

Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is challenged by their low abundance and largely unknown, biological context-dependent structural diversity. Here we provide a holistic workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology was used to identify epilipidomics signatures of lean and obese individuals with and without type II diabetes. Characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, was drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.


2021 ◽  
Vol 22 (24) ◽  
pp. 13643
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Xiaomin Shang ◽  
Young-Soo Keum

Extraction of lipids from biological tissues is a crucial step in lipid analysis. The selection of appropriate solvent is the most critical factor in the efficient extraction of lipids. A mixture of polar (to disrupt the protein-lipid complexes) and nonpolar (to dissolve the neutral lipids) solvents are precisely selected to extract lipids efficiently. In addition, the disintegration of complex and rigid cell-wall of plants, fungi, and microalgal cells by various mechanical, chemical, and enzymatic treatments facilitate the solvent penetration and extraction of lipids. This review discusses the chloroform/methanol-based classical lipid extraction methods and modern modifications of these methods in terms of using healthy and environmentally safe solvents and rapid single-step extraction. At the same time, some adaptations were made to recover the specific lipids. In addition, the high throughput lipid extraction methodologies used for liquid chromatography-mass spectrometry (LC-MS)-based plant and animal lipidomics were discussed. The advantages and disadvantages of various pretreatments and extraction methods were also illustrated. Moreover, the emerging green solvents-based lipid extraction method, including supercritical CO2 extraction (SCE), is also discussed.


2021 ◽  
Author(s):  
Sarah Oberlin ◽  
Aurore Nkiliza ◽  
Megan Parks ◽  
James E. Evans ◽  
Nancy Klimas ◽  
...  

Abstract Background: Nearly 250,000 veterans from the 1990-1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI will help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. Methods: Plasma lipid extracts from GWI (n=100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. Results: An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. Conclusion: Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder.


Author(s):  
Ryugo TERO ◽  
Natsumi Kobayashi

Abstract Supported lipid bilayers (SLBs) are artificial lipid bilayers at solid-liquid interfaces applied as cell membrane model systems. An advantage of the artificial system is that the lipid composition can be controlled arbitrarily. On the other hand, the SLB formation process and its efficiency are affected by the properties of the solid substrate surface. In this study, we investigated the effect of the electrostatic interaction between the negatively charged SiO2/Si substrate surface and the lipid bilayer membrane on the composition of binary SLBs comprising anionic and neutral lipids. The phase transition temperature and the area fraction of lipid domains of SLB were evaluated by fluorescence microscopy and the fluorescence recovery after photobleaching. The neutral lipid was preferably included in SLB, but the anionic lipid ratio increased with Ca2+ concentration during the SLB formation. The lipid composition in SLB can be controlled by modulating the substrate-induced electrostatic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhang ◽  
Linyong Xu ◽  
Ling Zhu ◽  
Yifan Liu ◽  
Siwei Yang ◽  
...  

Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.


2021 ◽  
pp. 1-13
Author(s):  
Weiwei Huang ◽  
Fei Gao ◽  
Yuting Zhang ◽  
Tianhui Chen ◽  
Chen Xu

<b><i>Background:</i></b> The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. <b><i>Summary:</i></b> LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. <b><i>Key Message:</i></b> In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.


Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. R99-R109
Author(s):  
Megumi Ibayashi ◽  
Ryutaro Aizawa ◽  
Junichiro Mitsui ◽  
Satoshi Tsukamoto

Lipid droplets (LDs) consist of a core of neutral lipids such as triacylglycerols and cholesteryl esters covered by a phospholipid monolayer. Recent studies have shown that LDs not only store neutral lipids but are also associated with various physiological functions. LDs are found in most eukaryotic cells and vary in size and quantity. It has long been known that mammalian oocytes contain LDs. Porcine and bovine oocytes contain substantial amounts of LDs, which cause their cytoplasm to darken, whereas mouse and human oocytes are translucent due to their low LD content. A sufficient amount of LDs in mammalian oocytes has been thought to be associated with oocyte maturation and early embryonic development, but the necessity of LDs has been questioned because embryonic development proceeds normally even when LDs are removed. However, recent studies have revealed that LDs play a crucial role during implantation and that maintaining an appropriate amount of LDs is important for early embryonic development, even in mammalian species with low amounts of LDs in their oocytes. This suggests that a fine-tuned balance of LD content is essential for successful mammalian embryonic development. In this review, we discuss the physiological importance of LDs in mammalian oocytes and preimplantation embryos based on recent findings on LD biology.


Sign in / Sign up

Export Citation Format

Share Document