Polarographic behaviour of Th(IV) in the presence of some ionic and non-ionic surfactants vis-a-vis their influence on the kinetics of the electrode reaction

1982 ◽  
Vol 263 (1) ◽  
Author(s):  
M. C. Dubey ◽  
Miss A. Varshney ◽  
M. Singh
1985 ◽  
Vol 263 (5) ◽  
pp. 420-423 ◽  
Author(s):  
R. Miller ◽  
S. S. Dukhin ◽  
G. Kretzschmar

1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.


1975 ◽  
Vol 28 (2) ◽  
pp. 237 ◽  
Author(s):  
JW Diggle ◽  
AJ Parker ◽  
DA Owensby

The standard electron-transfer heterogeneous rate constant of lithium, potassium, sodium and caesium amalgams in N,N-dimethylformamide was ascertained employing cyclic voltammetry in an effort to relate the presence of a non-equilibrium electrode reaction at the dropping lithium amalgam electrode to the variation of the lithium amalgam electrode potential with amalgam electrode con- figuration, i.e. whether streaming, dropping or stationary. Such variations are not observed at other alkali metal amalgam electrodes. ��� In the dipolar aprotic solvents the standard electron-transfer heterogeneous rate constant for the Li(Hg) electrode increases as the solvating power for Li+ decreases, i.e. dimethyl sulphoxide < di- methylformamide < propylene carbonate. Water is a much stronger solvator of Li+ than is propylene carbonate, but the electron transfer is faster in water than in propylene carbonate; the important role of entropic contributions in ion solvation is discussed as an explanation.


Sign in / Sign up

Export Citation Format

Share Document