Voltammetric investigation of the kinetics of alkali metal cation reduction in N,N-dimethylformamide

1975 ◽  
Vol 28 (2) ◽  
pp. 237 ◽  
Author(s):  
JW Diggle ◽  
AJ Parker ◽  
DA Owensby

The standard electron-transfer heterogeneous rate constant of lithium, potassium, sodium and caesium amalgams in N,N-dimethylformamide was ascertained employing cyclic voltammetry in an effort to relate the presence of a non-equilibrium electrode reaction at the dropping lithium amalgam electrode to the variation of the lithium amalgam electrode potential with amalgam electrode con- figuration, i.e. whether streaming, dropping or stationary. Such variations are not observed at other alkali metal amalgam electrodes. ��� In the dipolar aprotic solvents the standard electron-transfer heterogeneous rate constant for the Li(Hg) electrode increases as the solvating power for Li+ decreases, i.e. dimethyl sulphoxide < di- methylformamide < propylene carbonate. Water is a much stronger solvator of Li+ than is propylene carbonate, but the electron transfer is faster in water than in propylene carbonate; the important role of entropic contributions in ion solvation is discussed as an explanation.

2004 ◽  
Vol 116 (28) ◽  
pp. 3814-3817 ◽  
Author(s):  
Anne Bleuzen ◽  
Virginie Escax ◽  
Alban Ferrier ◽  
Françoise Villain ◽  
Michel Verdaguer ◽  
...  

1988 ◽  
Vol 53 (5) ◽  
pp. 903-911 ◽  
Author(s):  
Josef Hanzlík ◽  
Jan Hovorka ◽  
Zdeněk Samec ◽  
Štefan Toma

Kinetics of electron transfer between ferrocene or its derivative (1,1'-diethyl- or 1,1'-distearoylferrocene) in dichloroethane and hexacyanoferrate(III) in water was studied by means of convolution potential sweep voltammetry. Within the accessible range of experimental conditions no effect of either the potential or concentrations of reactants on the rate constant of electron transfer from the organic to the aqueous phase (ko→w = 1 . 10-7 m4 mol-1 s-1) was observed. Electron transfer was shown to occur far from the potential range, in which the ferricenium ion transfer can take place. However, the reaction was complicated by the chemical decomposition of ferricenium in dichloroethane (k = 0·346 s-1).


1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.


Sign in / Sign up

Export Citation Format

Share Document