Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods

2020 ◽  
Vol 234 (1) ◽  
pp. 85-106 ◽  
Author(s):  
Maksim Shundalau ◽  
Yuliya L. Mindarava ◽  
Anna S. Matsukovich ◽  
Sergey V. Gaponenko ◽  
Ali A. El-Emam ◽  
...  

AbstractThe Fourier transform infrared and Raman spectra of two adamantane-containing triazole thiones, namely 3-(adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-phenyl-1H-1,2,4-triazole-5(4H)-thione and 3-(adamantan-1-yl)-4-phenyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, were examined in the ranges of 3200–650 cm−1 and 3200–150 cm−1, respectively. The density functional theory calculations were performed for the geometric structures and vibrational spectra for the title molecules. The accurate equilibrium geometry structures of the molecules were determined on the basis of full geometry optimization at the B3LYP/cc-pVDZ level of the theory. The IR and Raman vibrational spectra were calculated and compared with the experimental ones. The experimental vibrational FT-IR and Raman spectra were interpreted. Based on the structure of the molecules the biological activity indices were predicted. It is established that compounds under consideration are very likely to exhibit the analgesic activities. The UV/Vis spectra of solution of the compounds in ethanol were measured in the range of 450–200 nm. The UV/Vis spectra simulations at the Time-Dependent DFT and Multi-Reference Perturbation Theory levels of theory demonstrate unsuitability of the TDDFT for description of the experimental spectra of the title molecules. It is highly probable that this is a consequence of the intramolecular charge transfer. In contrast, the MRPT results are in a good agreement with the experimental spectra.

2004 ◽  
Vol 82 (6) ◽  
pp. 987-997 ◽  
Author(s):  
P J.G Goulet ◽  
R F Aroca

In this work, surface-enhanced vibrational spectroscopy and normal vibrational spectroscopy as well as density functional theory (DFT) computational methods have been employed to investigate the nature of the chemical adsorption and orientation of the surface species generated from salicylic acid at silver surfaces. The structure of salicylic acid and its IR and Raman spectra are determined at the B3LYP/6-311+G(d,p) level of theory. These results are used in the assignment of the vibrational spectra. Surface-enhanced Raman scattering (SERS) spectra obtained from silver island films thinly coated with salicylic acid confirm chemical adsorption on the Ag nanostructures. To probe the nature of this surface complex, the optimized geometries and IR and Raman spectra of two model salicylate-silver complexes (Ag1 and Ag2) were calculated at the B3LYP/Lanl2DZ level of theory. It was found that good agreement exists between experimentally observed SERS spectra and the simulated SERS spectra of a complex with the salicylate monoanion bound to a Ag+ ion through its carboxylate group (Ag1). The carboxylate silver salt of salicylic acid (essentially the Ag1 complex) was also prepared, and its IR and Raman spectra were recorded for comparison with the surface-enhanced vibrational spectra. These results, along with the application of surface selection rules, suggest that salicylic acid is deprotonated at silver surfaces, interacting through its carboxylate group alone, and is preferentially in a tilted head-on orientation.Key words: chemisorption, salicylic acid, silver, density functional theory, surface-enhanced Raman scattering, reflection-absorption IR spectroscopy, surface-enhanced IR absorption.


2007 ◽  
Vol 61 (9) ◽  
pp. 1001-1006 ◽  
Author(s):  
Igor O. Osorio-Roman ◽  
Victor C. Vargas ◽  
Ricardo F. Aroca

The vibrational spectra and surface-enhanced Raman scattering (SERS) of 1,6-diphenyl-1,3,5-hexatriene (DPH) are discussed. The fundamental vibrational frequencies, overtones, and combinations observed in the infrared and Raman spectra of DPH are reported. The interpretation of the observed vibrational spectra was supported by a complete geometry optimization, followed by vibrational frequency and intensity computations for the cis- and trans- isomers of the DPH using density functional theory at the B3LYP/6-31G(d,p) level of theory. Because the molecule is photo-chemically active on Ag metal surfaces, the best SERS results for silver islands were obtained at low temperature and low energy density of the exciting laser line. DPH SERS on Au films was obtained at room temperature.


2021 ◽  
Vol 14 (8) ◽  
pp. 812
Author(s):  
Thammarat Aree

Depression, a global mental illness, is worsened due to the coronavirus disease 2019 (COVID-2019) pandemic. Tricyclic antidepressants (TCAs) are efficacious for the treatment of depression, even though they have more side effects. Cyclodextrins (CDs) are powerful encapsulating agents for improving molecular stability, water solubility, and lessening the undesired effects of drugs. Because the atomic-level understanding of the β-CD–TCA inclusion complexes remains elusive, we carried out a comprehensive structural study via single-crystal X-ray diffraction and density functional theory (DFT) full-geometry optimization. Here, we focus on two complexes lining on the opposite side of the β-CD–TCA stability spectrum based on binding constants (Kas) in solution, β-CD–protriptyline (PRT) 1—most stable and β-CD–maprotiline (MPL) and 2—least stable. X-ray crystallography unveiled that in the β-CD cavity, the PRT B-ring and MPL A-ring are aligned at a nearly perfect right angle against the O4 plane and primarily maintained in position by intermolecular C–H···π interactions. The increased rigidity of the tricyclic cores is arising from the PRT -CH=CH- bridge widens, and the MPL -CH2–CH2- flexure narrows the butterfly angles, facilitating the deepest and shallower insertions of PRT B-ring (1) and MPL A-ring (2) in the distorted round β-CD cavity for better complexation. This is indicated by the DFT-derived complex stabilization energies (ΔEstbs), although the complex stability orders based on Kas and ΔEstbs are different. The dispersion and the basis set superposition error (BSSE) corrections were considered to improve the DFT results. Plus, the distinctive 3D arrangements of 1 and 2 are discussed. This work provides the first crystallographic evidence of PRT and MPL stabilized in the β-CD cavity, suggesting the potential application of CDs for efficient drug delivery.


2020 ◽  
Author(s):  
Robson de Farias

<p> The present work is another contribution to a better understanding of the chemical bond in C<sub>2</sub>. Several density functional approach/basis set provided calculated IR and Raman spectra with simultaneous active bands. Hence, the hypothesis of electronic asymmetry in C<sub>2</sub> [1] was reinforced. </p>


Sign in / Sign up

Export Citation Format

Share Document