Practice for Using Significant Digits in Geotechnical Data

2021 ◽  
Author(s):  
Keyword(s):  
Author(s):  
Scot D. Weaver ◽  
Thomas E. Lefchik ◽  
Marc I. Hoit ◽  
Kirk Beach

Author(s):  
Tarik Chafiq ◽  
Mohammed Ouadoud ◽  
Hassane Jarar Oulidi ◽  
Ahmed Fekri

The aim of this research work is to ensure the integrity and correction of the geotechnical database which contains anomalies. These anomalies occurred mainly in the phase of inputting and/or transferring of data. The algorithm created in the framework of this paper was tested on a dataset of 70 core drillings. In fact, it is based on a multi-criteria analysis qualifying the geotechnical data integrity using the sequential approach. The implementation of this algorithm has given a relevant set of values in terms of output; which will minimalize processing time and manual verification. The application of the methodology used in this paper could be useful to define the type of foundation adapted to the nature of the subsoil, and thus, foresee the adequate budget.


Author(s):  
Wahyudi W. Parnadi ◽  
Warsa Warsa ◽  
Agus Laesanpura ◽  
Rizandi G. Parnadi ◽  
Hisafumi Asaue

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1310-1317 ◽  
Author(s):  
Steven J. Cardimona ◽  
William P. Clement ◽  
Katharine Kadinsky‐Cade

In 1995 and 1996, researchers associated with the US Air Force’s Phillips and Armstrong Laboratories took part in an extensive geophysical site characterization of the Groundwater Remediation Field Laboratory located at Dover Air Force Base, Dover, Delaware. This field experiment offered an opportunity to compare shallow‐reflection profiling using seismic compressional sources and low‐frequency ground‐penetrating radar to image a shallow, unconfined aquifer. The main target within the aquifer was the sand‐clay interface defining the top of the underlying aquitard at 10 to 14 m depth. Although the water table in a well near the site was 8 m deep, cone penetration geotechnical data taken across the field do not reveal a distinct water table. Instead, cone penetration tests show a gradual change in electrical properties that we interpret as a thick zone of partial saturation. Comparing the seismic and radar data and using the geotechnical data as ground truth, we have associated the deepest coherent event in both reflection data sets with the sand‐clay aquitard boundary. Cone penetrometer data show the presence of a thin lens of clays and silts at about 4 m depth in the north part of the field. This shallow clay is not imaged clearly in the low‐frequency radar profiles. However, the seismic data do image the clay lens. Cone penetrometer data detail a clear change in the soil classification related to the underlying clay aquitard at the same position where the nonintrusive geophysical measurements show a change in image character. Corresponding features in the seismic and radar images are similar along profiles from common survey lines, and results of joint interpretation are consistent with information from geotechnical data across the site.


2017 ◽  
Vol 43 (3) ◽  
pp. 1656
Author(s):  
P. Tsangaratos ◽  
I. Koumantakis ◽  
D. Rozos

The need to provide data management capabilities in geotechnical projects, makes data visualization in a more understanding way vital, while improvements in computer science, have created an opportunity to rethink the manner in which such data is archived and presented. Geographic Information Systems are considered nowadays as principal methods for analysis, utilizing their ability of manipulating, compiling and processing spatial data, such as geotechnical one. In this paper, the development of Borehole Analysis System (BAS) a specific Graphical User Interface (GUI) application is proposed to access geotechnical data with the aim of a relational database and an open source GIS platform, embodied in the application. The BAS, is able to integrate multiple layers of gathered information and to derive additional knowledge by applying statistical and data mining algorithms with the use of spatial query tools. These can give reasonable conclusions and better representation in 2-D and 3-D environment. The presented application is illustrated with an example from field practice, testifying its ability to be a useful tool for management and presentation of geological and geotechnical borehole data.


Sign in / Sign up

Export Citation Format

Share Document