Practice for Enclosed Carbon-Arc Exposures of Plastics

2021 ◽  
Author(s):  
Keyword(s):  
Author(s):  
David A. Muller

The sp2 rich amorphous carbons have a wide variety of microstructures ranging from flat sheetlike structures such as glassy carbon to highly curved materials having similar local ordering to the fullerenes. These differences are most apparent in the region of the graphite (0002) reflection of the energy filtered diffracted intensity obtained from these materials (Fig. 1). All these materials consist mainly of threefold coordinated atoms. This accounts for their similar appearance above 0.8 Å-1. The fullerene curves (b,c) show a string of peaks at distance scales corresponding to the packing of the large spherical and oblate molecules. The beam damaged C60 (c) shows an evolution to the sp2 amorphous carbons as the spherical structure is destroyed although the (220) reflection in fee fcc at 0.2 Å-1 does not disappear completely. This 0.2 Å-1 peak is present in the 1960 data of Kakinoki et. al. who grew films in a carbon arc under conditions similar to those needed to form fullerene rich soots.


Author(s):  
K. Saidane ◽  
H. Lange ◽  
M. Razafinimanana ◽  
A. Huczko ◽  
C. Zedde ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Kazunori Miyamoto ◽  
Shodai Narita ◽  
Yui Masumoto ◽  
Takahiro Hashishin ◽  
Mutsumi Kimura ◽  
...  

Diatomic carbon (C<sub>2</sub>) is historically an elusive chemical species. It has long been believed that the generation of C<sub>2 </sub>requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C<sub>2 </sub><i>in the ground state </i>is experimentally inaccessible. Here, we present the first “chemical” synthesis of C<sub>2 </sub>in a flask at <i>room temperature or below</i>, providing the first experimental evidence to support theoretical predictions that (1) C<sub>2 </sub>has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C<sub>2 </sub>serves as a molecular element in the formation of sp<sup>2</sup>-carbon allotropes such as graphite, carbon nanotubes and C<sub>60</sub>.


1994 ◽  
Vol 359 ◽  
Author(s):  
C. J. Brabec ◽  
A. Maiti ◽  
C. Roland ◽  
J. Bernholc

ABSTRACTIt has been shown experimentally that the growth of carbon nanotubes in an arc discharge is open-ended. This is surprising, because dangling bonds at the end of open tubes make the closed tube geometry more favorable energetically. Recently, it has been proposed that the large electric fields present at the tip of tube is the critical factor that keeps the tube open. We have studied the effects of the electric field on the growth of the nanotubes via ab initio molecular dynamics simulations. Surprisingly, it is found that the electric field cannot play a significant role in keeping the tubes open, implying that some other mechanism must be important. Extensive studies of the energetics and simulations of the growth of tubes were performed using a threebody Tersoff-Brenner potential. Our results show that there exists a critical diameter of ∼ 3 nm above which a defect-free growth of a straight tubule is possible. Narrower tubes stabilize configurations with adjacent pentagons that lead to tube-closure and termination of the growth. This explains the absence of tube narrower than 2.2 nm in arc discharge experiments.


Author(s):  
Jian-Xin Yan ◽  
Xuan Liao ◽  
Sheng-Hong Li ◽  
Hong-Wei Liu ◽  
Han-Yu Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document