Dynamic Response of Deck Pavement of Continuous Box Girder Bridge with Variable Section Corrugated Steel Webs under Moving Loads

2021 ◽  
Vol 50 (5) ◽  
pp. 20210416
Author(s):  
Su Xin ◽  
Si Chundi ◽  
Fan Taotao ◽  
Gao Xinzhen ◽  
Zhu Yuefeng ◽  
...  
Author(s):  
V. Verma ◽  
K. Nallasivam

Purpose: The primary objective of the current study is to numerically model the steel thin-walled curved box-girder bridge and to examine its various response parameters subjected to Indian Railway loading. Design/methodology/approach: The analysis is conducted by adopting a one dimensional curved thin-walled box-beam finite beam element based on finite element methodology. The scope of the work includes a computationally efficient, three-noded, one-dimensional representation of a thin-walled box-girder bridge, which is especially desirable for its preliminary analysis and design phase, as well as a study of the static characteristics of a steel curved bridge, which is critical for interpreting its dynamic response. Findings: The analytical results computed using finite element based MATLAB coding are presented in the form of various stress resultants under the effect of various combinations of Indian Railway loads. Additionally, the variation in different response parameters due to changes in radius and span length has also been investigated. Research limitations/implications: The research is restricted to the initial design and analysis phase of box-girder bridge, where the wall thickness is small as compared to the cross-section dimensions. The current approach can be extended to future research using a different method, such as Extended finite element technique on curved bridges by varying boundary conditions and number of elements. Originality/value: The validation of the adopted finite element approach is done by solving a numerical problem, which is in excellent agreement with the previous research findings. Also, previous studies had aimed at thin-walled box girders that had been exposed to point loading, uniformly distributed loading, or highway truck loading, but no research had been done on railway loading. Moreover, no previous research had performed the static analysis on thin-walled box-girders with six different response parameters, as the current study has. Engineers will benefit greatly from the research as it will help them predict the static behaviour of the curved thin-walled girder bridge, as well as assess their free vibration and dynamic response analysis.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Chundi Si ◽  
Xin Su ◽  
Enli Chen ◽  
Zhanyou Yan

The objective of this study is to analyse the difference of dynamic response of the deck pavement between a box girder bridge with corrugated steel webs and a concrete web box girder bridge. In this study, a simply supported beam with a span of 34 m is taken as the research object. According to the principle of equal shear stress of the box girder section, the three-dimensional finite element model of the superstructure of two kinds of box girder bridges is established by the finite element software ABAQUS. The DLOAD and UTRACLOAD subroutines are called to impose a movement load on the bridge deck. The dynamic response of the bridge deck pavement under different vehicle speeds (36 km/h, 72 km/h, and 108 km/h) and different load types (single wheel rectangular uniform load and double wheel rectangular uniform load) is calculated. The variation trends of vertical displacement, longitudinal shear stress, and transverse stress of two bridges are compared. The results show that, under the same conditions, the dynamic response of the box girder bridge with corrugated steel webs is greater than that of the equivalent concrete web box girder bridge. The box girder bridge with corrugated steel webs has lightweight, good seismic performance and bending resistance, and more obvious advantages in deflection control. The equivalent concrete web box girder bridge has good shear and torsional properties. The response of two kinds of deck pavement systems of the box girder bridge under dynamic loads is more obvious than that under static loads. This study would provide some theoretical reference for the dynamic response of the deck paving system of box girder bridges.


PCI Journal ◽  
1986 ◽  
Vol 31 (3) ◽  
pp. 22-47 ◽  
Author(s):  
Charles C. Zollman ◽  
Serge H. Barbaux

2015 ◽  
Vol 111 ◽  
pp. 470-477 ◽  
Author(s):  
Lukáš Krkoška ◽  
Martin Moravčík

Sign in / Sign up

Export Citation Format

Share Document