Static response of curved steel thin-walled box-girder bridge subjected to Indian railway loading

Author(s):  
V. Verma ◽  
K. Nallasivam

Purpose: The primary objective of the current study is to numerically model the steel thin-walled curved box-girder bridge and to examine its various response parameters subjected to Indian Railway loading. Design/methodology/approach: The analysis is conducted by adopting a one dimensional curved thin-walled box-beam finite beam element based on finite element methodology. The scope of the work includes a computationally efficient, three-noded, one-dimensional representation of a thin-walled box-girder bridge, which is especially desirable for its preliminary analysis and design phase, as well as a study of the static characteristics of a steel curved bridge, which is critical for interpreting its dynamic response. Findings: The analytical results computed using finite element based MATLAB coding are presented in the form of various stress resultants under the effect of various combinations of Indian Railway loads. Additionally, the variation in different response parameters due to changes in radius and span length has also been investigated. Research limitations/implications: The research is restricted to the initial design and analysis phase of box-girder bridge, where the wall thickness is small as compared to the cross-section dimensions. The current approach can be extended to future research using a different method, such as Extended finite element technique on curved bridges by varying boundary conditions and number of elements. Originality/value: The validation of the adopted finite element approach is done by solving a numerical problem, which is in excellent agreement with the previous research findings. Also, previous studies had aimed at thin-walled box girders that had been exposed to point loading, uniformly distributed loading, or highway truck loading, but no research had been done on railway loading. Moreover, no previous research had performed the static analysis on thin-walled box-girders with six different response parameters, as the current study has. Engineers will benefit greatly from the research as it will help them predict the static behaviour of the curved thin-walled girder bridge, as well as assess their free vibration and dynamic response analysis.

Author(s):  
V. Verma ◽  
K. Nallasivam

Purpose: Curved box-girder bridges offers an excellent solution to the problems associated with traffic congestion. However, owing to their complex geometry, they are subjected to shear lag, torsional warping and cross-sectional distortion, which must be assessed in their study and design. Furthermore, the dynamic behaviour of curved bridges adds to the complexity of the issue, emphasizing the importance of studying free vibration. The purpose of this study is to numerically model the concrete curved box-girder bridge considering torsional warping, distortion and distortional warping effects and to identify key parameters that influence the free vibration response of the box-girder bridge by validating it with experimental and analytical studies. Design/methodology/approach: The concrete bridge is numerically modelled by means of computationally effective thin-walled box-beam finite elements that consider torsional warping, distortion and distortional warping, which are prominent features of thinwalled box-girders. The free vibration analysis of the concrete curved box-girder bridge is performed by developing a finite element based MATLAB program. Findings: The identification of critical parameters that influence the free vibration behaviour of curved thin-walled concrete box-girder bridges is one of the main findings of the study. Each parameter and its effect has been extensively discussed. Research limitations/implications: The study limits for the preliminary design phase of thin-walled box-girder bridge decks, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique on multi-span curved bridges having unequal span.


2011 ◽  
Vol 422 ◽  
pp. 693-696
Author(s):  
Yan Weng ◽  
Mei Cen ◽  
Ya Guang Xu

A simple box girder bridge with spans 25m is being constructed on the No.2 road of a project of PanZhiHua Steel. A Bailey trussed girder is constructed under the bridge to assist its construction. The paper makes spatial finite element analysis about the Bailey trussed girder. Firstly, the spatial finite element model is built. Then the force, stress and displacement of the girder under six box girders’ self weigh and the construction load are analyzed in detail. Lastly, the construction scheme is optimized. After optimization, all indexes of Bailey trussed girder can meet code requirement.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Chundi Si ◽  
Xin Su ◽  
Enli Chen ◽  
Zhanyou Yan

The objective of this study is to analyse the difference of dynamic response of the deck pavement between a box girder bridge with corrugated steel webs and a concrete web box girder bridge. In this study, a simply supported beam with a span of 34 m is taken as the research object. According to the principle of equal shear stress of the box girder section, the three-dimensional finite element model of the superstructure of two kinds of box girder bridges is established by the finite element software ABAQUS. The DLOAD and UTRACLOAD subroutines are called to impose a movement load on the bridge deck. The dynamic response of the bridge deck pavement under different vehicle speeds (36 km/h, 72 km/h, and 108 km/h) and different load types (single wheel rectangular uniform load and double wheel rectangular uniform load) is calculated. The variation trends of vertical displacement, longitudinal shear stress, and transverse stress of two bridges are compared. The results show that, under the same conditions, the dynamic response of the box girder bridge with corrugated steel webs is greater than that of the equivalent concrete web box girder bridge. The box girder bridge with corrugated steel webs has lightweight, good seismic performance and bending resistance, and more obvious advantages in deflection control. The equivalent concrete web box girder bridge has good shear and torsional properties. The response of two kinds of deck pavement systems of the box girder bridge under dynamic loads is more obvious than that under static loads. This study would provide some theoretical reference for the dynamic response of the deck paving system of box girder bridges.


2012 ◽  
Vol 446-449 ◽  
pp. 1182-1185
Author(s):  
Wen Liang Qiu ◽  
Cai Liang Huang ◽  
Zhao Yi Chen

Because the multi-box girder bridge has many advantages, such as large torsion rigidity, large load-bearing capacity, stability, fine appearance, good applicability and convenient construction, it is widely used in China. But for the defection existing in design and construction, many box girders have serious diseases. Aiming at the diseases of a viaduct bridge, the causes of diseases are analyzed and the enforcement method is proposed in this paper. The study shows that, though the box girders have large torsion rigidity, the diaphragms are designed necessarily to enhance the transversal connection between the box girders, to make them bear the loads together, to reduce their stresses and deformation, and to reduce the stresses of deck too.


2014 ◽  
Vol 578-579 ◽  
pp. 642-647
Author(s):  
Ya Feng Gong ◽  
Xiao Bo Sun ◽  
Huan Li Wang ◽  
Hai Peng Bi

The mechanical properties of cross beam in continuous box girder bridge can be obtained through analyzing the finite element model and measured data of bridge. A new simplified calculation method for cross beam is proposed in this paper, which is called modified shear method. Comparative analysis with traditional method is used to verify its feasibility and practicability.


1993 ◽  
Vol 20 (1) ◽  
pp. 107-119 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
H. M. Hachem

To better understand the behaviour of curved box girder bridges in resisting eccentric design truck loads, and the influence of plan curvature on the structural response, a model study was conducted at the University of Ottawa. In this study, the elastic response of a curved composite box girder bridge model was evaluated experimentally and confirmed analytically using the finite element method. Analytical predictions of both vertical displacements and normal stresses at critical sections compared fairly well with those evaluated experimentally. The isoparametric thin shell element employed in the analysis proved to be versatile and provided an accurate representation of the various structural components of a curved box girder bridge. Despite the eccentric nature of the applied OHBDC design truck loads and the bridge plan curvature, it was evident that in resisting the applied live loads, the girders at critical sections share equal proportions of the applied bending moments. Key words: bridge, curved, cellular, composite, eccentric loads, static, linear, experimental, finite element.


2013 ◽  
Vol 275-277 ◽  
pp. 961-965
Author(s):  
Ming Min Tang ◽  
Li Chao Su ◽  
Shui Wan

Taking South-to-North Water Diversion Bridge, a continuous composite box-girder bridge with corrugated steel webs, as the engineering background, the cantilever beam end’s deflection calculation formulae considering shear deformation were deduced by using energy method. Comparing with finite-element analysis (FEA) values and measured values, the formulae which considered both concentrated force and uniform load have enough accuracy. Results show that, shear deformation’s proportion is more obvious in overall deflection of such box-girders which have smaller span ratio, and it’s more than 30%. For continuous composite box-girder bridge with corrugated steel webs, contribution of shear deformation to overall deflection should not be ignored.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yinhui Wang ◽  
Yidong Xu ◽  
Zheng Luo ◽  
Haijun Wu ◽  
Liangliang Yan

According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.


Sign in / Sign up

Export Citation Format

Share Document