Influence of Retrogression and Reaging Treatment on Intergranular Corrosion Resistance and Exfoliation Corrosion Resistance in AA7010 Aluminum Alloy

2021 ◽  
Vol 10 (1) ◽  
pp. 20200035
Author(s):  
S. Krishnanunni ◽  
R. Ranganatha ◽  
V. Anil Kumar ◽  
R. K. Gupta ◽  
G. Ajithkumar
2020 ◽  
Vol 326 ◽  
pp. 05004
Author(s):  
Zhiguo Chen ◽  
Chenghua Lu ◽  
Jing Peng ◽  
Zhengui Yuan

The comprehensive performance of Al-Zn-Mg-Cu alloy can be significantly improved by a proposed novel thermo-mechanical treatment (NTMT). The influence of the NTMT on the properties and microstructure was investigated by tensile test, corrosion resistance test, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results show that Al-Zn-Mg-Cu alloy treated by the NTMT can obtain an excellent combination of strength and ductility. The highest yield strength and ultimate tensile strength reached 643 MPa and 664 MPa respectively, and the elongation was 9.7%. Meanwhile, electrochemical corrosion resistance and intergranular corrosion resistance in the aluminum alloy can be improved after the NTMT. The mechanism of the excellent combination of strength and ductility is thought to be the synergistic effect of dislocations substructures, texture configuration, and nanoprecipitates. The improvement of intergranular corrosion resistance of the aluminum alloy is caused by changes in the micro-morphology of grain boundary precipitates after the NTMT, which can block anodic dissolution channels along grain boundaries to reduce the rate of anodic dissolution and avoid hydrogen embrittlement.


Author(s):  
Changqing Ye ◽  
Weiguo Zhai ◽  
Guangyao Lu ◽  
Qingsong Liu ◽  
Liang Ni ◽  
...  

In this paper, shielded metal arc welding on the dissimilar joint between 2205 duplex stainless steel and composite bimetallic plates (304 L stainless steel/10CrNi3MoV steel) with a filler metal E2209 was performed. Furthermore, the microstructure, phase, mechanical properties and intergranular corrosion resistance of the joints were investigated and element distributions of the interfaces were characterized. The results show that austenite transformed to ferrite under the influence of welding thermal cycle, and then a large amount of ferrite appeared in heat affected zone (HAZ) of 2205 duplex stainless steel. Coarse bainite grains were formed in HAZ of the 10CrNi3MoV steel near the fusion line with high temperature welding thermal cycle. Fine granular bainite was also generated in HAZ of 10CrNi3MoV steel due to the relatively short exposure time to the active temperature of grain growth. Local peak temperature near the base 10CrNi3MoV steel was still high enough to recrystallize the 10CrNi3MoV steel to form partial-recrystallization HAZ due to phase change. The filler metal was compatible with the three kinds of base materials. The thickness of the elemental diffusion interfaces layers was about 100 µm. The maximum microhardness value was obtained in the HAZ of 2205 duplex stainless steel (287 ± 14 HV), and the minimum one appeared in HAZ of SS304L (213 ± 5 HV). The maximum tensile strength of the welded joint was about 670 ± 6 MPa, and the tensile specimens fractured in ductile at matrix of the composite bimetallic plates. The impact energy of the weld metal and HAZ of the 10CrNi3MoV steel tested at –20 °C were 274 ± 6 J and 308 ± 5 J, respectively. Moreover, the intergranular corrosion resistance of the weldment including 304 L stainless steel, weld metal, HAZs and 2205 duplex stainless steel was in good agreement with the functional design requirements of materials corrosion resistance.


2018 ◽  
Vol 913 ◽  
pp. 439-444 ◽  
Author(s):  
Zhao Ming Li ◽  
Hai Chang Jiang ◽  
Yun Li Wang ◽  
Duo Zhang ◽  
De Sheng Yan ◽  
...  

In this paper, the effect of Sc addition (0.06 wt%) on the corrosion behavior of medium strength Al-Zn-Mg alloy is investigated by mass loss measurements, electrochemical experiment, intergranular corrosion and exfoliation corrosion tests. The results indicate the addition of Sc reduces the relative weight loss and enhances pitting performance as a result of grain refinement. The improved intergranular corrosion and exfoliation corrosion resistance caused by minor Sc addition are mainly attributed to the delay in both the initiation and advance stages of local corrosion.


Micron ◽  
2021 ◽  
pp. 103202
Author(s):  
Meng-jia Li ◽  
Shuo Liu ◽  
Xiang-dong Wang ◽  
Yun-jia Shi ◽  
Qing-lin Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document