grain boundary characteristics
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 236
Author(s):  
Yao Lin ◽  
Shan Liu ◽  
Tao Wu ◽  
Guangchun Wang

The “torsion and annealing” grain boundary modification of pure nickel wires with different diameters was carried out in this paper. The effects of torsional cycles as well as unidirectional/bidirectional torsion methods on grain boundary characteristic distribution and plasticity were investigated. The fraction of special boundaries, grain boundary characteristic distributions and grain orientations of samples with different torsion parameters were detected by electron backscatter diffraction. Hardness measurement was conducted to characterize the plasticity. Then, the relationship between micro grain boundary characteristics and macro plasticity was explored. It was found that the special boundaries, especially Σ3 boundaries, are increased after torsion and annealing and effectively broke the random boundary network. The bidirectional torsion with small torsional circulation unit was the most conducive way to improve the fraction of special boundaries. The experiments also showed that there was a good linear correlation between the fraction of special boundaries and hardness. The plasticization mechanism was that plenty of grains with Σ3 boundaries, [001] orientations and small Taylor factor were generated in the thermomechanical processes. Meanwhile, the special boundaries broke the random boundary network. Therefore, the material was able to achieve greater plastic deformation. Moreover, the mechanism of torsion and annealing on the plasticity of pure nickel was illustrated, which provides theoretical guidance for the pre-plasticization of nickel workpieces.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1428
Author(s):  
Yunlei Wang ◽  
Liping Ren ◽  
Jingren Dong ◽  
Chuanchuan Cao

In order to study the microstructure evolution rule of pure aluminum plates during different cold-rolled (CR) deformation degrees and annealing processes, samples with aCR deformation of 50~85%, heating rates of 60~100 °C/min and annealing at the target temperature of 350~500 °C were investigated. The microstructure, crystallite dimension and grain boundary characteristics were characterized by the methods of polarizing microscope (PM) and electron backscattered diffraction (EBSD). The results showed that the crystallite dimension of the initial state was 102 μm and ends up completely broken with an increase in the CR deformation degree. When the CR deformation increases to 85%, the deformed micro-bands were very small, with a band spacing of 5~10 μm. At this time, the grain distortion is more serious, there are more high-density grain defects, such as dislocations, and there is a high deformation of the storage energy, which is the energy preparation for the subsequent finished products to withstand the annealing process. The recrystallization fraction was higher with an increase in annealing temperature. After completed recrystallization, the grains showed an equiaxed shape. Orientation imaging and misorientation angle analysis showed that the red-oriented grains of the (001) plane, which had preferred nucleation, recrystallization and rapid grain growth. Final grains of the completed recrystallization are relatively coarse. Under the same deformation, the average crystallite dimension of the recrystallized grains decreases with an increase in annealing heating rate.


2021 ◽  
Author(s):  
Jahnavi Desai Choundraj ◽  
Josh Kacher

Abstract Al-Mg alloys undergo sensitization when exposed to elevated temperatures, making them susceptible to intergranular corrosion and stress corrosion cracking. Most of the existing research on microstructure effects on sensitization is centered on the effect of intrinsic grain boundary characteristics such as misorientation angle and coincident site lattice (CSL) values. Very few studies have systematically investigated the influence of extrinsic characteristics such as dislocation density. In this paper, the influence of local microstructure characteristics on the sensitization susceptibility of AA5456 was investigated using in situ optical microscopy corrosion experiments and electron back scattering diffraction (EBSD) analysis. The results show a clear trend between the local geometrically necessary dislocation (GND) density and β phase precipitation, with higher GND densities correlating with higher rates sensitized boundaries. This trend held true even for low angle grain boundaries. These results demonstrate the importance of considering factors beyond grain boundary characteristics in determining susceptibility to sensitization.


Sign in / Sign up

Export Citation Format

Share Document