evolution of microstructure
Recently Published Documents


TOTAL DOCUMENTS

985
(FIVE YEARS 254)

H-INDEX

48
(FIVE YEARS 9)

Author(s):  
Biplab Ghosh ◽  
Hrishikesh Das ◽  
Asis Samanta ◽  
Jyotsna Dutta Majumdar ◽  
Manojit Ghosh

Abstract The present investigation intends to interpret the effect of tool rotational speed on the mechanical properties and microstructural evolution in Aluminium 6061-T6 alloy during friction stir welding. A higher value of tool rotation produces more hardness at the nugget zone, which is attributed to the higher intensity of reprecipitation at higher rpm, revealed by transmission electron microscopy. The nugget zone is revealed as a nearly precipitate-free region, while the thermo-mechanically affected zone contains coarse precipitates, deformed and dynamically recovered grains with a few recrystallized grains. Significant reduction in grain size in the stirred zone is also a key finding. The observations depict the dependence of microstructure, and thus mechanical behaviour on tool rotational speed. A specific combination of process parameters has been determined from experiments, which corresponds to the maximum joint efficiency.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Sung Jin Park ◽  
Seong-Hyeon Jo ◽  
Jung Gi Kim ◽  
Juntae Kim ◽  
Ryul Lee ◽  
...  

Invar alloy possesses a uniquely low coefficient of thermal expansion, making it an ideal material for fine metal masks. To manufacture fine metal masks, Invar alloys are often cold-rolled, during which residual stress develops. Heat treatment is an effective means to control residual stress that develops within Invar sheets after cold rolling, but the treatment should be carried out with care. In this article, a comprehensive study on the effect of heat treatment on the residual stress, microstructure, and mechanical properties of a cold-rolled Invar sheet is reported. We show that while both recovery and recrystallization are effective means of reducing residual stress, substantial microstructural changes and, therefore, notable changes in mechanical properties and residual stress, occur after recrystallization. Moreover, residual stress release due to recrystallization can be affected by microstructure and texture prior to heat treatment as these factors play a significant role in recrystallization.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Josef Hlinka ◽  
Kamila Dostalova ◽  
Katerina Peterek Dedkova ◽  
Roman Madeja ◽  
Karel Frydrysek ◽  
...  

Nickel-based austenitic stainless steels are still common for manufacture of implants intended for acute hard tissue reinforcement or stabilization, but the risk of negative reactions due to soluble nickel-rich corrosion products must be considered seriously. Corrosion processes may even be accelerated by the evolution of microstructure caused by excessive heat during machining, etc. Therefore, this study also deals with the investigation of microstructure and microhardness changes near the threaded holes of the anterolateral distal tibial plate containing approx. 14wt.% Ni by composition. There were only insignificant changes of microhardness, grain size, or microstructure orientation found close to the area of machining. In addition, wettability measurements of surface energy demonstrated only minor differences for bulk material and areas close to machining. The cyclic potentiodynamic polarization tests were performed in isotonic physiological solution. The first cycle was used for the determination of corrosion characteristics of the implant after chemical passivation, the second cycle was used to simulate real material behavior under the condition of previous surface damage by excessive pitting corrosion occurring during previous polarization. It was found that the damaged and spontaneously repassived surface showed a three-time higher standard corrosion rate than the “as received” chemically passivated surface. One may conclude that previous surface damage may decrease the lifetime of the implant significantly and increase the amount of nickel-based corrosion products distributed into surrounding tissues.


Author(s):  
María Hernández-Miranda ◽  
Emmanuel Gutiérrez-Castañeda ◽  
Salvador Palomares-Sánchez ◽  
Pedro Cruz-Alcántar ◽  
Antonio Aragón-Piña ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8310
Author(s):  
Jia Liu ◽  
GuiYun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
QianHang Liu ◽  
...  

Stress affects the microstructure of the material to influence the durability and service life of the components. However, the previous work of stress measurement lacks quantification of the different variations in time and spatial features of micromagnetic properties affected by stress in elastic and plastic ranges, as well as the evolution of microstructure. In this paper, microstructure evolution under stress in elastic and plastic ranges is evaluated by magnetic Barkhausen noise (MBN) transient analysis. Based on a J-A model, the duration and the intensity are the eigenvalues for MBN transient analysis to quantify transient size and number of Barkhausen events under stress. With the observation of domain wall (DW) distribution and microstructure, the correlation between material microstructure and MBN transient eigenvalues is investigated to verify the ability of material status evaluation on the microscopic scale of the method. The results show that the duration and the intensity have different change trends in elastic and plastic ranges. The eigenvalue fusion of the duration and intensity distinguishes the change in microstructure under the stress in elastic and plastic deformation. The appearance of grain boundary (GB) migration and dislocation under the stress in the plastic range makes the duration and the intensity higher on the GB than those inside the grain. Besides, the reproducibility of the proposed method is investigated by evaluating microstructure evolution for silicon steel sheet and Q235 steel sheet. The proposed method investigates the correlation between the microstructure and transient micromagnetic properties, which has the potential for stress evaluation in elastic and plastic ranges for industrial materials.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongfu Wang ◽  
Cheng Tang ◽  
Hongen An ◽  
Yuhong Zhao

Abstract Different undercooling degrees of Cu55Ni45 alloy were obtained by the combination of molten glass purification and cyclic superheating, and the maximum undercooling degree reached 284 K. The microstructure of the alloy was observed by metallographic microscope, and the evolution of microstructure was studied systematically. There are two occasions of grain refinement in the solidification structure of the alloy: one occurs in the case of low undercooling, and the other occurs in the case of high undercooling. Electron backscatter diffraction (EBSD) technology was used to analyze the rapid solidification structure under high undercooling. The features of flat polygonal grain boundary, high proportion of twin boundary, and large proportion of large angle grain boundary indicate recrystallization. The change in microhardness of the alloy under different undercooling degrees was studied by microhardness tester. It was found that the average microhardness decreased sharply at high undercooling degrees, which further confirmed the recrystallization of the solidified structure at high undercooling degrees.


Sign in / Sign up

Export Citation Format

Share Document