Use of Instrumented Charpy Test for Determination of Crack Initiation Toughness

2008 ◽  
pp. 354-354-12
Author(s):  
H-W Viehrig ◽  
J Boehmert ◽  
H Richter ◽  
M Valo
1993 ◽  
Vol 66 (4) ◽  
pp. 634-645
Author(s):  
N. Nakajima ◽  
J. L. Liu

Abstract The effect of gel on the fracture toughness of four PVC/NBR (50/50) blends was characterized by two different J- integral methods. Three of these blends are compatible blends with 33% acrylonitrile in NBRs, and the fourth with 21% acrylonitrile content, is an incompatible blend. Two types of gel are involved in this study microgels and macrogels. The J-integral methods are (1) conventional method proposed by Bagley and Landes and (2) crack initiation locus method proposed by Kim and Joe. The same load-displacement curves are used in both methods. However, the latter eliminates the energy dissipation away from the crack tip in the determination of Jc, while the former does not. Both methods produced almost the same results indicating that the energy dissipation away from the crack tip is negligible in these samples. The fracture toughness of a macrogel-containing blend is much greater than that of a microgel-containing blend, which, in turn, is only slightly greater than that of a gel-free blend. This implies that the two gel-containing blends have different fracture processes. The incompatible blend has the lowest fracture toughness due to weak interaction at the boundaries of the two phases.


Author(s):  
Philippe Thibaux ◽  
Se´bastien Mu¨ller ◽  
Benoit Tanguy ◽  
Filip Van Den Abeele

The crack arrest capacity of a linepipe is one of the most important material parameter for such components. In current design codes, it is expressed as the energy absorbed by a CVN impact test. This prescribed impact energy for a given pipeline is typically between 50 and 120J, depending on the grade of the material, the pressure and the dimensions of the pipe. The continuous improvement of steel production has lead to the situation that the impact values achieved in standard pipeline steel production are much larger than 200J for the base material. The question of the significance of these high impact energies can be raised, particularly considering that no correlation has been found between CVN values and crack arrest properties of very high strength materials (X100–X120). In this investigation, instrumented Charpy tests and notched tensile tests were performed on an X70 material. The same tests were also simulated using the finite element method and the Gurson-Tvergaard-Needleman damage model. The combination of supplementary experimental information coming from the instrumentation of the Charpy test and finite element simulations delivers a different insight about the test. It is observed that the crack does not break the sample in 2 parts in ductile mode. After 6–7mm of propagation, the crack deviates and stops. The propagation stops when the crack meets the part of the sample becoming wider due to bending. Finite element simulations proved that it results in a quasi constant force during a displacement of the hammer of almost 10mm. The consequence is that more than 25% of the energy is dissipated in a different fracture mode at the end of the test. Finite element simulations proved also that damage is already occurring at the maximum of the load, but that damage has almost no influence on the load for two-thirds of the displacement at the maximum. In the case of the investigated steel, it means that more than 27J, as often mentioned in standards for avoidance of brittle failure, are dissipated by plastic bending before the initiation of the crack. From the findings of this study, one can conclude that the results of the Charpy test are very sensitive to crack initiation and that only a limited part of the test is meaningful to describe crack propagation. Therefore, it is questionable if the Charpy test is adapted to predict the crack arrest capacity of steels with high crack initiation energy.


1986 ◽  
Vol 14 (6) ◽  
pp. 292 ◽  
Author(s):  
A Wolfenden ◽  
D Hellmann ◽  
K-H Schwalbe

Sign in / Sign up

Export Citation Format

Share Document