Case Studies: Use of Low Strain Transient Dynamic Response Method for Rock Socketed End Bearing Bored Piles

Author(s):  
Thilina H. Kodithuwakku ◽  
Hewage Saman Thilakasiri ◽  
Abeysinghe Rathnayaka
2021 ◽  
Vol 2113 (1) ◽  
pp. 012015
Author(s):  
Yilun Tan ◽  
Yucheng Wang

Abstract With the rapid development of new energy generation, the intermittence and randomicity of its power output will have a significant impact on the transmission capacity of DC motor. Therefore, a virtual DC motor stability control method considering the fluctuation of new energy generation is proposed. The natural frequencies and modes of the virtual DC motor shafting rotor are analyzed by means of a steady sinusoidal excitation at zero speed. Considering the transient dynamic response of the shafting rotor of virtual DC motor under the fluctuation of new energy generation, Taylor series and transfer acceleration matrix method are used to calculate the transient dynamic response of shafting rotor under the fluctuation of new energy generation, and the parameters of virtual DC motor are identified and estimated. Based on this, a proportional resonance controller is designed to realize the stability control of virtual DC motor. Experimental results show that the interactive power curve between virtual DC motor and regional distribution network is smoother after optimal control, and this method can effectively improve the power balance ability of virtual DC motor.


2016 ◽  
Vol 6 (2) ◽  
pp. 152-170
Author(s):  
Jianguo Huang ◽  
Huashan Sheng

AbstractAn efficient adaptive time stepping method is proposed for transient dynamic response analysis, which is frequently encountered in civil engineering and elsewhere. The reduced problem following the spatial discretisation can be discretised in the time by a C0-continuous discontinuous Galerkin method, and the adaptive time stepping strategy is based on optimal a posteriori error estimates developed using the energy method. Some numerical experiments demonstrate the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document