Micromechanical Modeling of Temperature-Dependent Initiation Fracture Toughness in Advanced Aluminum Alloys

Author(s):  
MJ Haynes ◽  
BP Somerday ◽  
CL Lach ◽  
RP Gangloff
2005 ◽  
Vol 96 (8) ◽  
pp. 924-932
Author(s):  
M. Tarafder ◽  
Swati Dey ◽  
S. Sivaprasad ◽  
S. Tarafder ◽  
M. Nasipuri

2019 ◽  
Vol 174 ◽  
pp. 369-378 ◽  
Author(s):  
Yingwei Li ◽  
Yixuan Liu ◽  
Paul-Erich Öchsner ◽  
Daniel Isaia ◽  
Yichi Zhang ◽  
...  

1985 ◽  
Vol 58 ◽  
Author(s):  
A. Brown ◽  
D. Raybould

ABSTRACTIn recent years, interest in high temperature aluminum alloys has increased. However, nearly all the data available is for simple extrusions. This paper looks at the properties of sheet made from a rapidly solidified Al-10Fe-2.5V-2Si alloy. The sheet is made by direct forging followed by hot rolling, this is readily scalable, so allowing the production of large sheet. The room temperature strength and fracture toughness of the sheet are comparable to those of 2014-T6. The high temperature strength, specific stiffness and corrosion resistance are excellent. Recently, improved thermomechanical processing and new alloys have allowed higher strengths and fracture toughness values to be obtained.


Author(s):  
Z. X. Wang ◽  
H. M. Li ◽  
Y. J. Chao ◽  
P. S. Lam

Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from −160 to −45 °C within the ductile-brittle transition regime. As many researchers have shown, the failure stress (σf) of the material could be approximated as a constant. The characteristic length, or the critical distance (rc) from the crack tip, at which σf is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A2 two-parameter constraint theory in fracture mechanics, the fracture toughness (JC or KJC) can be expressed as a function of the constraint level (A2) and the critical distance rc. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant σf and a set of temperature-dependent rc. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W = 0.075) to deep cracks (a/W = 0.5), where a is the crack length and W is the specimen width.


Sign in / Sign up

Export Citation Format

Share Document