Results on the Influence of Crack-Tip Plasticity During Dynamic Crack Growth

Author(s):  
LB Freund
2012 ◽  
Vol 452-453 ◽  
pp. 1184-1189
Author(s):  
Jelena M. Djokovic ◽  
Ružica R. Nikolić

In this paper is analyzed the behavior of parameters that characterize the process of a dynamic crack growth along the interface between the two orthotropic materials. The emphasis is placed on the application of the fracture mechanics concept for the interfacial crack that propagates dynamically, at high speed. In this work is considered the behavior of the oscillation index, the traction resolution factor and the energy factor depending on the crack tip speed and the stifnesses ratio. The oscillatory index increases with the crack tip speed and tends to infinity when the crack speed approaches the Rayleigh wave speed of the less stiff of the two materials. The traction resolution factor depends strongly on the crack speed but weakly on the stiffness ratio. The behavior of the energy factor is completely different from the behavior of the traction resolution factor. Results provided in this paper can be used as a guide for micromechanical modeling of materials.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Madhu Kirugulige ◽  
Hareesh V. Tippur

Mixed-mode dynamic crack growth behavior in a compositionally graded particle filled polymer is studied experimentally and computationally. Beams with single edge cracks initially aligned in the direction of the compositional gradient and subjected to one-point eccentric impact loading are examined. Optical interferometry along with high-speed photography is used to measure surface deformations around the crack tip. Two configurations, one with a crack on the stiffer side of a graded sheet and the second with a crack on the compliant side, are tested. The observed crack paths are distinctly different for these two configurations. Furthermore, the crack speed and stress intensity factor variations between the two configurations show significant differences. The optical measurements are examined with the aid of crack-tip fields, which incorporate local elastic modulus variations. To understand the role of material gradation on the observed crack paths, finite element models with cohesive elements are developed. A user-defined element subroutine for cohesive elements based on a bilinear traction-separation law is developed and implemented in a structural analysis environment. The necessary spatial variation of material properties is introduced into the continuum elements by first performing a thermal analysis and then by prescribing material properties as temperature dependent quantities. The simulated crack paths and crack speeds are found to be in qualitative agreement with the observed ones. The simulations also reveal differences in the energy dissipation in the two functionally graded material (FGM) cases. T-stresses and hence the crack-tip constraint are significantly different. Prior to crack initiation, larger negative T-stresses near the crack tip are seen when the crack is situated on the compliant side of the FGM.


2000 ◽  
Vol 23 (3) ◽  
pp. 299-305
Author(s):  
Zhenhan Yao ◽  
Zhihong Zhou ◽  
Bo Wang

2009 ◽  
Vol 80 (12) ◽  
pp. 1520-1543 ◽  
Author(s):  
Qinglin Duan ◽  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Ted Belytschko

Sign in / Sign up

Export Citation Format

Share Document