Use of Statistics in Identifying Problems in Ski Injury Research

Author(s):  
Jasper E. Shealy
Keyword(s):  
2015 ◽  
pp. 115-117
Author(s):  
M. L. Hull ◽  
C. D. Mote
Keyword(s):  

2007 ◽  
Vol 177 (4S) ◽  
pp. 37-37
Author(s):  
James K. Kuan ◽  
Robert Kaufman ◽  
Jonathan L. Wright ◽  
Charles Mock ◽  
Avery B. Nathens ◽  
...  

2020 ◽  
pp. bmjmilitary-2020-001655
Author(s):  
J W Denny ◽  
R J Brown ◽  
M G Head ◽  
J Batchelor ◽  
A S Dickinson

IntroductionThere is little systematic tracking or detailed analysis of investments in research and development for blast injury to support decision-making around research future funding.MethodsThis study examined global investments into blast injury-related research from public and philanthropic funders across 2000–2019. Research databases were searched using keywords, and open data were extracted from funder websites. Data collected included study title, abstract, award amount, funder and year. Individual awards were categorised to compare amounts invested into different blast injuries, the scientific approaches taken and analysis of research investment into blast traumatic brain injury (TBI).ResultsA total of 806 awards were identified into blast injury-related research globally, equating to US$902.1 million (m, £565.9m GBP). There was a general increase in year-on-year investment between 2003 and 2009 followed by a consistent decline in annual funding since 2010. Pre-clinical research received $671.3 m (74.4%) of investment. Brain-related injury research received $427.7 m (47.4%), orthopaedic injury $138.6 m (15.4%), eye injury $63.7 m (7.0%) and ear injury $60.5m (6.7%). Blast TBI research received a total investment of $384.3 m, representing 42.6% of all blast injury-related research. The U.S. Department of Defense funded $719.3 m (80%).ConclusionsInvestment data suggest that blast TBI research has received greater funding than other blast injury health areas. The funding pattern observed can be seen as reactive, driven by the response to the War on Terror, the rising profile of blast TBI and congressionally mandated research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhimei Qiu ◽  
Yan Wang ◽  
Weiwei Liu ◽  
Chaofu Li ◽  
Ranzun Zhao ◽  
...  

AbstractAutophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.


Sign in / Sign up

Export Citation Format

Share Document