scholarly journals Electrophysiological Properties of Medium Spiny Neuron Subtypes in the Caudate-Putamen of Prepubertal Male and Female Drd1a-tdTomato Line 6 BAC Transgenic Mice

eNeuro ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. ENEURO.0016-19.2019 ◽  
Author(s):  
Jaime A. Willett ◽  
Jinyan Cao ◽  
David M. Dorris ◽  
Ashlyn G. Johnson ◽  
Laura A. Ginnari ◽  
...  
2018 ◽  
Vol 120 (4) ◽  
pp. 1712-1727 ◽  
Author(s):  
Jinyan Cao ◽  
David M. Dorris ◽  
John Meitzen

The nucleus accumbens core (AcbC) is a striatal brain region essential for integrating motivated behavior and reward processing with premotor function. In humans and rodents, research has identified sex differences and sex steroid hormone sensitivity in AcbC-mediated behaviors, in disorders, and in rats in the electrophysiological properties of the AcbC output neuron type, the medium spiny neuron (MSN). It is unknown whether the sex differences detected in MSN electrophysiological properties extend to mice. Furthermore, MSNs come in distinct subtypes with subtle differences in electrophysiological properties, and it is unknown whether MSN subtype-specific electrophysiology varies by sex. To address these questions, we used male and female Drd1a-tdTomato line 6 bacterial artificial chromosome transgenic mice. We made acute brain slices of the AcbC, and performed whole cell patch-clamp recordings across MSN subtypes to comprehensively assess AcbC MSN subtype electrophysiological properties. We found that ( 1 mice MSNs did not exhibit the sex differences detected in rat MSNs, and 2) electrophysiological properties differed between MSN subtypes in both sexes, including rheobase, resting membrane potential, action potential properties, intrinsic excitability, input resistance in both the linear and rectified ranges, and miniature excitatory postsynaptic current properties. These findings significantly extend previous studies of MSN subtypes performed in males or animals of undetermined sex and indicate that the influence of sex upon AcbC MSN properties varies between rodent species. NEW & NOTEWORTHY This research provides the most comprehensive assessment of medium spiny neuron subtype electrophysiological properties to date in a critical brain region, the nucleus accumbens core. It additionally represents the first evaluation of whether mouse medium spiny neuron subtype electrophysiological properties differ by sex.


Author(s):  
Jinyan Cao ◽  
John Meitzen

Exposure to steroid sex hormones such as 17β-estradiol (estradiol) during early life potentially permanently masculinize neuron electrophysiological phenotype. In rodents, one crucial component of this developmental process occurs in males, with estradiol aromatized in the brain from testes-sourced testosterone. However, it is unknown whether most neuron electrophysiological phenotypes are altered by this early masculinization process, including medium spiny neurons (MSNs) of the rat caudate-putamen. MSNs are the predominant and primary output neurons of the caudate-putamen, and exhibit increased intrinsic excitability in females compared to males. Here we hypothesize that since perinatal estradiol exposure occurs in males, then a comparable exposure in females to estradiol or its receptor agonists would be sufficient to induce masculinization. To test this hypothesis, we injected perinatal female rats with estradiol or its receptor agonists and then later assessed MSN electrophysiology. Female and male rats on postnatal day 0 and 1 were systemically injected with either vehicle, estradiol, the ERα agonist PPT, the ERβ agonist DPN, or the GPER-1 agonist G1. On postnatal days 19±2 MSN electrophysiological properties were assessed using whole-cell patch clamp recordings. Estradiol exposure abolished increased intrinsic excitability in female compared to male MSNs. Exposure to either an ERα or ERβ agonist masculinized female MSN evoked action potential firing rate properties, while exposure to an ERβ agonist masculinized female MSN inward rectification properties. Exposure to ER agonists minimally impacted male MSN electrophysiological properties. These findings indicate that perinatal estradiol exposure masculinizes MSN electrophysiological phenotype via activation of ERα and ERβ.


2020 ◽  
Vol 80 (6) ◽  
pp. 538-546
Author(s):  
Nancy Paniagua ◽  
Rocío Girón ◽  
Carlos Goicoechea ◽  
Mª Isabel Martín‐Fontelles ◽  
Ana Bagues

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145472
Author(s):  
Anne-Caroline Schmöle ◽  
Ramona Lundt ◽  
Benjamin Gennequin ◽  
Hanna Schrage ◽  
Eva Beins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document