scholarly journals Association of Cocaine- and Amphetamine-Regulated Transcript-Immunoreactive Elements with Thyrotropin-Releasing Hormone-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus and Its Role in the Regulation of the Hypothalamic–Pituitary–Thyroid Axis during Fasting

2000 ◽  
Vol 20 (24) ◽  
pp. 9224-9234 ◽  
Author(s):  
Csaba Fekete ◽  
Emese Mihály ◽  
Lu-Guang Luo ◽  
Joseph Kelly ◽  
Jes Thorn Clausen ◽  
...  
1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


2005 ◽  
Vol 281 (8) ◽  
pp. 5000-5007 ◽  
Author(s):  
Amisra A. Nikrodhanond ◽  
Tania M. Ortiga-Carvalho ◽  
Nobuyuki Shibusawa ◽  
Koshi Hashimoto ◽  
Xiao Hui Liao ◽  
...  

Thyroid ◽  
2019 ◽  
Vol 29 (12) ◽  
pp. 1858-1868
Author(s):  
Edina Varga ◽  
Erzsébet Farkas ◽  
Györgyi Zséli ◽  
Andrea Kádár ◽  
Alexandra Venczel ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4952-4964 ◽  
Author(s):  
Mario Perello ◽  
Ronald C. Stuart ◽  
Charles A. Vaslet ◽  
Eduardo A. Nillni

Different physiological conditions affect the biosynthesis and processing of hypophysiotropic proTRH in the hypothalamic paraventricular nucleus, and consequently the output of TRH. Early studies suggest that norepinephrine (NE) mediates the cold-induced activation of the hypothalamic-pituitary-thyroid axis at a central level. However, the specific role of NE on the biosynthesis and processing of proTRH has not been fully investigated. In this study, we found that NE affects gene transcription, protein biosynthesis, and secretion in TRH neurons in vitro; these changes were coupled with an up-regulation of prohormone convertase enzymes (PC) 1/3 and PC2. In vivo, NE is the main mediator of the cold-induced activation of the hypothalamic-pituitary-thyroid axis at the hypothalamic level, in which it potently stimulates the biosynthesis and proteolytic processing of proTRH through a coordinated up-regulation of the PCs. This activation occurs via β-adrenoreceptors and phosphorylated cAMP response element binding signaling. In contrast, α-adrenoreceptors regulate TRH secretion but not proTRH biosynthesis and processing. Therefore, this study provides novel information on the molecular mechanisms of control of hypophysiotropic TRH biosynthesis.


2011 ◽  
Vol 6 (4) ◽  
pp. 518-523
Author(s):  
Negrin Negrev ◽  
Yuri Nyagolov ◽  
Margarita Stefanova ◽  
Emiliya Stancheva

AbstractEffects of the hormones of the hypothalamic-pituitary-thyroid axis on some basic parameters of the activity of protein C anticoagulation pathway in rats are studied. Thyrotropin-releasing hormone (0.06 mg/kg body mass), thyrotropin (1 IU/kg), triiodothyronine (T3) (0.08 mg/kg), thyroxine (T4) (0.08 mg/kg), administered subcutaneously for three consecutive days on four different groups of rats increased significantly activated protein C, free protein S and protein S activity, and reduced the soluble endothelial protein C receptor. Protein C antigen and total protein S were significantly elevated only by thyrotropin-releasing hormone and thyroid-stimulating hormone, but they were not affected by T3 and T4 treatment. The data indicate the hypothalamic-pituitary-thyroid axis is involved in the regulation of the protein C anticoagulation pathway in rats by activation of this system, suggesting a tendency of hypocoagulability.


Sign in / Sign up

Export Citation Format

Share Document