camp response element binding
Recently Published Documents


TOTAL DOCUMENTS

994
(FIVE YEARS 167)

H-INDEX

92
(FIVE YEARS 6)

2021 ◽  
Vol 14 (4) ◽  
pp. 2299-2306
Author(s):  
Sindhuja A Sindhuja A ◽  
Vimalavathini R Vimalavathini R ◽  
Kavimani S Kavimani S

Advanced glycation end products (AGEs) are formed excessively in pathological conditions due to non - enzymatic glycation of proteins, lipids or nucleic acids, affecting their structure and function. Isorhamnetin is a naturally occurring flavonoid with anti-inflammatory, anti-oxidant, anti-obesity, anticancer, anti-diabetic and anti-atherosclerosis activity. Structure activity studies of isorhamnetin reveal the presence of hydroxyl group in the B-ring of isorhamnetin may contribute to antiglycation activity. Hence we hypothised that isorhamnetin may have antiglycation activity owing to its structure as well as antioxidant and free radical scavenging activities by modulating various AGE pathway proteins. The aim of our study was to determine the antiglycation activity of isorhamnetin by targeting various molecular proteins of AGE pathway using insilico docking. The structure of isorhamnetin was imported and drawn in Marvin sketch (version 6. 3. 0). Nearly 17 molecular proteins of AGE pathway were docked with isorhamnetin using autodock tools 4.2 (version 1. 5. 6) software. The present study showed that isorhamnetin exhibited good docking profiles with receptor for advanced glycation End product (RAGE), protein kinase B (PKB/Akt2), activating transcription factor4 (ATF4), cAMP response element-binding protein (CREB), extracellular signal regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3-K) and signal transducer and activator of transcription (STAT) indicating it may exert good antiglycation activity by modulating these proteins of AGE pathways. However further invitro and invivo studies are required to establish the antiglycation activity of isorhamnetin.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Lijin Song ◽  
Meibo He ◽  
Qinghua Sun ◽  
Yujing Wang ◽  
Jindong Zhang ◽  
...  

Intestinal melatonin exerts diverse biological effects on the body. Our previous research showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore, we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms. Male Sprague–Dawley germfree rats were orally administered with or without Roseburia hominis. R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of propionate and butyrate in the intestinal contents were significantly elevated after gavage of R. hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), arylalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hydroxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate, could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e., metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating intestinal diseases.


2021 ◽  
Vol 14 ◽  
Author(s):  
Lynette A. Desouza ◽  
Madhurima Benekareddy ◽  
Sashaina E. Fanibunda ◽  
Farhan Mohammad ◽  
Balaganesh Janakiraman ◽  
...  

Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.


2021 ◽  
Author(s):  
Ahlam Mohamed Alhusaini ◽  
Laila M. Fadda ◽  
Huda Alsharafi ◽  
Amjad Fahad Alshamary ◽  
Iman H. Hasan

Lead acetate (lead ac.) is a widespread ecological toxicant that can cause marked neurotoxicity and decline in brain functions. This study aimed to evaluate the possible neuroprotective role of L-ascorbic (ASCR) and curcumin (CRCM) alone or together against lead ac.-induced neurotoxicity. Rats were injected with lead ac. then treated orally with ASCR and CRCM alone or in combination for seven days. Lead ac. caused elevation in brain tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), caspase-3, and malondialdehyde (MDA) levels, while superoxide dismutase (SOD), reduced glutathione (GSH) as well as the expression of brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) and Beclin1 were down-regulated. Expressions of C/EBP homologous protein (CHOP) and mammalian Target of rapamycin kinase (mTOR) were upregulated in brain tissues matched with the control group. Histopathological examination supported the previously mentioned parameters, the administration of the antioxidants in question modulated all the altered previous parameters. The combination regimen achieved the superlative results in the antagonizing lead ac.-induced neurotoxicity via its antioxidant and anti-apoptotic activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jialu Wang ◽  
Xiaoxue Xu ◽  
Wanying Jia ◽  
Dongyi Zhao ◽  
Tomasz Boczek ◽  
...  

Objectives. Inhibition of calcium-/calmodulin- (CaM-) dependent kinase II (CaMKII) is correlated with epilepsy. However, the specific mechanism that underlies learning and memory impairment and neuronal death by CaMKII inhibition remains unclear. Materials and Methods. In this study, KN93, a CaMKII inhibitor, was used to investigate the role of CaMKII during epileptogenesis. We first identified differentially expressed genes (DEGs) in primary cultured hippocampal neurons with or without KN93 treatment using RNA-sequencing. Then, the impairment of learning and memory by KN93-induced CaMKII inhibition was assessed using the Morris water maze test. In addition, Western blotting, immunohistochemistry, and TUNEL staining were performed to determine neuronal death, apoptosis, and the relative signaling pathway. Results. KN93-induced CaMKII inhibition decreased cAMP response element-binding (CREB) protein activity and impaired learning and memory in Wistar and tremor (TRM) rats, an animal model of genetic epilepsy. CaMKII inhibition also induced neuronal death and reactive astrocyte activation in both the Wistar and TRM hippocampi, deregulating mitogen-activated protein kinases. Meanwhile, neuronal death and neuron apoptosis were observed in PC12 and primary cultured hippocampal neurons after exposure to KN93, which was reversed by SP600125, an inhibitor of c-Jun N-terminal kinase (JNK). Conclusions. CaMKII inhibition caused learning and memory impairment and apoptosis, which might be related to dysregulated JNK signaling.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ni-Ni Chiang ◽  
Te-Hsien Lin ◽  
Yu-Shan Teng ◽  
Ying-Chieh Sun ◽  
Kuo-Hsuan Chang ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Malk Eun Pak ◽  
You-Chang Oh ◽  
Yeo Jin Park ◽  
Jae Kwang Kim ◽  
Min-Gyeong Shin ◽  
...  

Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pit Shan Chong ◽  
Chi Him Poon ◽  
Jaydeep Roy ◽  
Ka Chun Tsui ◽  
Sze Yuen Lew ◽  
...  

Abstract Background Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. Methods Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. Results The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. Conclusion HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway.


2021 ◽  
pp. 096032712110588
Author(s):  
Zhang Bao ◽  
Yin Jing

Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is one of the new brominated flame retardants with adverse neurobehavioral potential. These flame retardants are often added to household furnishings where children would come into contact with them. This study explores whether oral exposure to TBPH for 28 days would impair neurobehavioral function in mice and the role of curcumin (CUR) in this process. CUR is a natural antioxidant and is thought to be of use in the treatment of neurological toxicity due to its neuroprotective effects. Learning and memory of mice exposed to TBPH was investigated using the Morris water maze. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined to assess oxidative damage. Western blot was used to detect the expression of glucose-regulated protein 78-kDa (GRP78), PKR-like ER kinase (PERK), and C/EBP homologous protein (CHOP) in the hippocampus. End-point effects were evaluated through observing post-synaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB). Although TBPH exposure alone does not impair learning and memory, oxidative stress markers and endoplasmic reticulum stress–associated proteins were adversely affected in exposed mice. TBPH could significantly decrease the levels of BDNF, p-CREB, and PSD-95 in the hippocampus, and these TBPH-induced neurotoxic effects were attenuated by CUR. These findings provide further understanding of the neurotoxic effects of TBPH and the protective effect of CUR on TBPH exposure.


Sign in / Sign up

Export Citation Format

Share Document