scholarly journals Generation of Distinct Types of Periglomerular Olfactory Bulb Interneurons during Development and in Adult Mice: Implication for Intrinsic Properties of the Subventricular Zone Progenitor Population

2007 ◽  
Vol 27 (3) ◽  
pp. 657-664 ◽  
Author(s):  
S. De Marchis ◽  
S. Bovetti ◽  
B. Carletti ◽  
Y.-C. Hsieh ◽  
D. Garzotto ◽  
...  
Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 689-702 ◽  
Author(s):  
C.B. Chambers ◽  
Y. Peng ◽  
H. Nguyen ◽  
N. Gaiano ◽  
G. Fishell ◽  
...  

The olfactory bulb, neocortex and archicortex arise from a common pool of progenitors in the dorsal telencephalon. We studied the consequences of supplying excess Notch1 signal in vivo on the cellular and regional destinies of telencephalic precursors using bicistronic replication defective retroviruses. After ventricular injections mid-neurogenesis (E14.5), activated Notch1 retrovirus markedly inhibited the generation of neurons from telencephalic precursors, delayed the emergence of cells from the subventricular zone (SVZ), and produced an augmentation of glial progeny in the neo- and archicortex. However, activated Notch1 had a distinct effect on the progenitors of the olfactory bulb, markedly reducing the numbers of cells of any type that migrated there. To elucidate the mechanism of the cell fate changes elicited by Notch1 signals in the cortical regions, short- and long-term cultures of E14.5 telencephalic progenitors were examined. These studies reveal that activated Notch1 elicits a cessation of proliferation that coincides with an inhibition of the generation of neurons. Later, during gliogenesis, activated Notch1 triggers a rapid cellular proliferation with a significant increase in the generation of cells expressing GFAP. To examine the generation of cells destined for the olfactory bulb, we used stereotaxic injections into the early postnatal anterior subventricular zone (SVZa). We observed that precursors of the olfactory bulb responded to Notch signals by remaining quiescent and failing to give rise to differentiated progeny of any type, unlike cortical precursor cells, which generated glia instead of neurons. These data show that forebrain precursors vary in their response to Notch signals according to spatial and temporal cues, and that Notch signals influence the composition of forebrain regions by modulating the rate of proliferation of neural precursor cells.


2009 ◽  
Vol 30 (5) ◽  
pp. 742-755 ◽  
Author(s):  
Anahí Hurtado-Chong ◽  
María J. Yusta-Boyo ◽  
Eva Vergaño-Vera ◽  
Alessandro Bulfone ◽  
Flora de Pablo ◽  
...  

2018 ◽  
Vol 29 (8) ◽  
pp. 3590-3604 ◽  
Author(s):  
Oressia Zalucki ◽  
Lachlan Harris ◽  
Tracey J Harvey ◽  
Danyon Harkins ◽  
Jocelyn Widagdo ◽  
...  

Abstract Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular–subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Development ◽  
2020 ◽  
Vol 147 (10) ◽  
pp. dev184861
Author(s):  
Astrid Deryckere ◽  
Elke Stappers ◽  
Ruben Dries ◽  
Elise Peyre ◽  
Veronique van den Berghe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document