scholarly journals Phasic Dopamine Release Evoked by Abused Substances Requires Cannabinoid Receptor Activation

2007 ◽  
Vol 27 (4) ◽  
pp. 791-795 ◽  
Author(s):  
J. F. Cheer ◽  
K. M. Wassum ◽  
L. A. Sombers ◽  
M. L. A. V. Heien ◽  
J. L. Ariansen ◽  
...  
2013 ◽  
Vol 39 (6) ◽  
pp. 1441-1452 ◽  
Author(s):  
Erik B Oleson ◽  
Roger Cachope ◽  
Aurelie Fitoussi ◽  
Kimberly Tsutsui ◽  
Sharon Wu ◽  
...  

Author(s):  
Christopher Patzke ◽  
Jinye Dai ◽  
Marisa M. Brockmann ◽  
Zijun Sun ◽  
Pascal Fenske ◽  
...  

2017 ◽  
Vol 313 (2) ◽  
pp. L267-L277 ◽  
Author(s):  
Z. Helyes ◽  
Á. Kemény ◽  
K. Csekő ◽  
É. Szőke ◽  
K. Elekes ◽  
...  

Sporadic clinical reports suggested that marijuana smoking induces spontaneous pneumothorax, but no animal models were available to validate these observations and to study the underlying mechanisms. Therefore, we performed a systematic study in CD1 mice as a predictive animal model and assessed the pathophysiological alterations in response to 4-mo-long whole body marijuana smoke with integrative methodologies in comparison with tobacco smoke. Bronchial responsiveness was measured with unrestrained whole body plethysmography, cell profile in the bronchoalveolar lavage fluid with flow cytometry, myeloperoxidase activity with spectrophotometry, inflammatory cytokines with ELISA, and histopathological alterations with light microscopy. Daily marijuana inhalation evoked severe bronchial hyperreactivity after a week. Characteristic perivascular/peribronchial edema, atelectasis, apical emphysema, and neutrophil and macrophage infiltration developed after 1 mo of marijuana smoking; lymphocyte accumulation after 2 mo; macrophage-like giant cells, irregular or destroyed bronchial mucosa, goblet cell hyperplasia after 3 mo; and severe atelectasis, emphysema, obstructed or damaged bronchioles, and endothelial proliferation at 4 mo. Myeloperoxidase activity, inflammatory cell, and cytokine profile correlated with these changes. Airway hyperresponsiveness and inflammation were not altered in mice lacking the CB1 cannabinoid receptor. In comparison, tobacco smoke induced hyperresponsiveness after 2 mo and significantly later caused inflammatory cell infiltration/activation with only mild emphysema. We provide the first systematic and comparative experimental evidence that marijuana causes severe airway hyperresponsiveness, inflammation, tissue destruction, and emphysema, which are not mediated by the CB1 receptor.


2018 ◽  
Vol 64 (6) ◽  
pp. 918-926 ◽  
Author(s):  
Annelies Cannaert ◽  
Jolien Storme ◽  
Cornelius Hess ◽  
Volker Auwärter ◽  
Sarah M R Wille ◽  
...  

Abstract BACKGROUND Synthetic cannabinoids are the largest group of new psychoactive substances monitored by the European Monitoring Centre of Drugs and Drug Addiction. The rapid proliferation of novel analogs makes the detection of these new derivatives challenging and has initiated considerable interest in the development of so-called “untargeted” screening strategies to detect these compounds. METHODS We developed new, stable bioassays in which cannabinoid receptor activation by cannabinoids led to recruitment of truncated β-arrestin 2 (βarr2) to the cannabinoid receptors, resulting in functional complementation of a split luciferase, allowing readout via bioluminescence. Aliquots (500 μL) of authentic serum (n = 45) and plasma (n = 73) samples were used for simple liquid–liquid extraction with hexane:ethyl acetate (99:1 v/v). Following evaporation and reconstitution in 100 μL of Opti-MEM® I/methanol (50/50 v/v), 10 μL of these extracts was analyzed in the bioassays. RESULTS Truncation of βarr2 significantly (for both cannabinoid receptors; P = 0.0034 and 0.0427) improved the analytical sensitivity over the previously published bioassays applied on urine samples. The new bioassays detected cannabinoid receptor activation by authentic serum or plasma extracts, in which synthetic cannabinoids were present at low- or sub-nanogram per milliliter concentration or in which Δ9-tetrahydrocannabinol was present at concentrations >12 ng/mL. For synthetic cannabinoid detection, analytical sensitivity was 82%, with an analytical specificity of 100%. CONCLUSIONS The bioassays have the potential to serve as a first-line screening tool for (synthetic) cannabinoid activity in serum or plasma and may complement conventional analytical assays and/or precede analytical (mass spectrometry based) confirmation.


1999 ◽  
Vol 82 (3) ◽  
pp. 1286-1294 ◽  
Author(s):  
Jane M. Sullivan

Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calcium channels that support neurotransmitter release in these cells, making modulation of these channels a candidate for cannabinoid-receptor–mediated effects on synaptic transmission. Whole cell patch-clamp recordings of glutamatergic neurons cultured from the CA1 and CA3 regions of the hippocampus were used to identify the mechanisms of the effects of cannabinoids on synaptic transmission. Cannabinoid receptor activation reduced excitatory postsynaptic current (EPSC) size by ∼50% but had no effect on the amplitude of spontaneous miniature EPSCs (mEPSCs). This reduction in EPSC size was accompanied by an increase in paired-pulse facilitation measured in low (1 mM) extracellular calcium and by a decrease in paired-pulse depression measured in normal (2.5 mM) extracellular calcium. Together, these results strongly support the hypothesis that cannabinoid receptor activation decreases EPSC size by reducing release of neurotransmitter presynaptically while having no effect on postsynaptic sensitivity to glutamate. Further experiments were done to identify the molecular mechanisms underlying this cannabinoid-receptor–mediated decrease in neurotransmitter release. Cannabinoid receptor activation had no effect on the size of the presynaptic pool of readily releasable neurotransmitter-filled vesicles, eliminating reduction in pool size as a mechanism for cannabinoid-receptor–mediated effects. After blockade of Q- and N-type calcium channels with ω-agatoxin TK and ω-conotoxin GVIA; however, activation of cannabinoid receptors reduced EPSC size by only 14%. These results indicate that cannabinoid receptor activation reduces the probability that neurotransmitter will be released in response to an action potential via an inhibition of presynaptic Q- and N-type calcium channels. This molecular mechanism most likely contributes to the impairment of learning and memory produced by cannabinoids and may participate in the analgesic, antiemetic, and anticonvulsive effects of these drugs as well.


1997 ◽  
Vol 338 (2) ◽  
pp. R3-R5 ◽  
Author(s):  
Hans Rollema ◽  
Yi Lu ◽  
Anne W Schmidt ◽  
Stevin H Zorn

2010 ◽  
Vol 13 (2) ◽  
pp. 191-205 ◽  
Author(s):  
Francisco Alén ◽  
Aurélie Mouret ◽  
Maria-Paz Viveros ◽  
Ricardo Llorente ◽  
Gabriel Lepousez ◽  
...  

2000 ◽  
Vol 863 (1-2) ◽  
pp. 120-131 ◽  
Author(s):  
M.Todd Kirby ◽  
Robert E Hampson ◽  
Sam A Deadwyler

Sign in / Sign up

Export Citation Format

Share Document