scholarly journals Activity-Based Detection of Cannabinoids in Serum and Plasma Samples

2018 ◽  
Vol 64 (6) ◽  
pp. 918-926 ◽  
Author(s):  
Annelies Cannaert ◽  
Jolien Storme ◽  
Cornelius Hess ◽  
Volker Auwärter ◽  
Sarah M R Wille ◽  
...  

Abstract BACKGROUND Synthetic cannabinoids are the largest group of new psychoactive substances monitored by the European Monitoring Centre of Drugs and Drug Addiction. The rapid proliferation of novel analogs makes the detection of these new derivatives challenging and has initiated considerable interest in the development of so-called “untargeted” screening strategies to detect these compounds. METHODS We developed new, stable bioassays in which cannabinoid receptor activation by cannabinoids led to recruitment of truncated β-arrestin 2 (βarr2) to the cannabinoid receptors, resulting in functional complementation of a split luciferase, allowing readout via bioluminescence. Aliquots (500 μL) of authentic serum (n = 45) and plasma (n = 73) samples were used for simple liquid–liquid extraction with hexane:ethyl acetate (99:1 v/v). Following evaporation and reconstitution in 100 μL of Opti-MEM® I/methanol (50/50 v/v), 10 μL of these extracts was analyzed in the bioassays. RESULTS Truncation of βarr2 significantly (for both cannabinoid receptors; P = 0.0034 and 0.0427) improved the analytical sensitivity over the previously published bioassays applied on urine samples. The new bioassays detected cannabinoid receptor activation by authentic serum or plasma extracts, in which synthetic cannabinoids were present at low- or sub-nanogram per milliliter concentration or in which Δ9-tetrahydrocannabinol was present at concentrations >12 ng/mL. For synthetic cannabinoid detection, analytical sensitivity was 82%, with an analytical specificity of 100%. CONCLUSIONS The bioassays have the potential to serve as a first-line screening tool for (synthetic) cannabinoid activity in serum or plasma and may complement conventional analytical assays and/or precede analytical (mass spectrometry based) confirmation.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7733 ◽  
Author(s):  
Shivani Sachdev ◽  
Rochelle Boyd ◽  
Natasha L. Grimsey ◽  
Marina Santiago ◽  
Mark Connor

BackgroundSynthetic cannabinoids are a commonly used class of recreational drugs that can have significant adverse effects. There have been sporadic reports of co-consumption of illicit drugs with rodenticides such as warfarin and brodifacoum (BFC) over the past 20 years but recently, hundreds of people have been reported to have been poisoned with a mixture of synthetic cannabinoids and BFC. We have sought to establish whether BFC directly affects cannabinoid receptors, or their activation by the synthetic cannabinoid CP55940 or the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC).MethodsThe effects of BFC on the hyperpolarization of wild type AtT20 cells, or AtT20 cells stably expressing human CB1- or CB2- receptors, were studied using a fluorescent assay of membrane potential. The effect of BFC on CB1- and CB2-mediated inhibition of forskolin-stimulated adenylyl cyclase (AC) activation was measured using a BRET assay of cAMP levels in HEK 293 cells stably expressing human CB1or CB2.ResultsBFC did not activate CB1or CB2receptors, or affect the hyperpolarization of wild type AtT20 cells produced by somatostatin. BFC (1 µM) did not affect the hyperpolarization of AtT20-CB1or AtT20-CB2cells produced by CP55940 or Δ9-THC. BFC (1 µM) did not affect the inhibition of forskolin-stimulated AC activity by CP55940 in HEK 293 cells expressing CB1or CB2. BFC (1 µM) also failed to affect the desensitization of CB1and CB2signaling produced by prolonged (30 min) application of CP55940 or Δ9-THC to AtT20 cells.DiscussionBFC is not a cannabinoid receptor agonist, and appeared not to affect cannabinoid receptor activation. Our data suggests there is no pharmacodynamic rationale for mixing BFC with synthetic cannabinoids; however, it does not speak to whether BFC may affect synthetic cannabinoid metabolism or biodistribution. The reasons underlying the mixing of BFC with synthetic cannabinoids are unknown, and it remains to be established whether the “contamination” was deliberate or accidental. However, the consequences for people who ingested the mixture were often serious, and sometimes fatal, but this seems unlikely to be due to BFC action at cannabinoid receptors.


2019 ◽  
Author(s):  
Shivani Sachdev ◽  
Rochelle Boyd ◽  
Natasha L Grimsey ◽  
Mark Connor

AbstractBackgroundSynthetic cannabinoids are a commonly used class of recreational drugs that can have significant adverse effects. There have been sporadic reports of co-consumption of illicit drugs with rodenticides such as warfarin and brodifacoum (BFC) over the past 20 years but recently, hundreds of people have been reported to have been poisoned with a mixture of synthetic cannabinoids and BFC. We have sought to establish whether BFC directly affects cannabinoid receptors, or their activation by the synthetic cannabinoid CP55940 or the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC).MethodsThe effects of BFC on the hyperpolarization of wild type AtT20 cells, or AtT20 cells stably expressing human CB1- and CB2-mediated receptors, were studied using a fluorescent assay of membrane potential. The effects of BFC on CB1and CB2mediated inhibition of forskolin-stimulated adenylyl cyclase (AC) activation was measured using a BRET assay of cAMP levels in HEK 293 cells stably expressing human CB1and CB2.ResultsBFC did not activate CB1or CB2receptors, or affect the hyperpolarization of wild type AtT20 cells produced by somatostatin. BFC (10µM) did not affect the hyperpolarization of AtT20-CB1or AtT20-CB2cells produced by CP55940 or Δ9-THC. BFC (1µM) did not affect the inhibition of forskolin-stimulated AC activity by CP55940 in HEK 293 cells expressing CB1or CB2. BFC (1µM) also failed to affect the desensitization of CB1and CB2signalling produced by prolonged (30 min) application of CP55940 or Δ9-THC to AtT20 cells.DiscussionBFC is not a cannabinoid receptor agonist, and appeared not to affect cannabinoid receptor activation. Our data suggests there is no pharmacodynamic rationale for mixing BFC with synthetic cannabinoids, however, it does not speak to whether BFC may affect synthetic cannabinoid metabolism or biodistribution. The reasons underlying the mixing of BFC with synthetic cannabinoids are unknown, and it remains to be established whether the “contamination” was deliberate or accidental. However, the consequences for people who ingested the mixture were often serious, and sometimes fatal, but this seems unlikely to be due to BFC action at cannabinoid receptors.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 793
Author(s):  
Emmanouil D. Tsochatzis ◽  
Joao Alberto Lopes ◽  
Margaret V. Holland ◽  
Fabiano Reniero ◽  
Giovanni Palmieri ◽  
...  

The rapid diffusion of new psychoactive substances (NPS) presents unprecedented challenges to both customs authorities and analytical laboratories involved in their detection and characterization. In this study an analytical approach to the identification and structural elucidation of a novel synthetic cannabimimetic, quinolin-8-yl-3-[(4,4-difluoropiperidin-1-yl) sulfonyl]-4-methylbenzoate (2F-QMPSB), detected in seized herbal material, is detailed. An acid precursor 4-methyl-3-(4,4-difluoro-1-piperidinylsulfonyl) benzoic acid (2F-MPSBA), has also been identified in the same seized material. After extraction from the herbal material the synthetic cannabimimetic, also referred to as synthetic cannabinoid receptor agonists or “synthetic cannabinoids”, was characterized using gas chromatography-mass spectrometry (GC-MS), 1H, 13C, 19F and 15N nuclear magnetic resonance (NMR) and high-resolution tandem mass spectrometry (HR-MS/MS) combined with chromatographic separation. A cheminformatics platform was used to manage and interpret the analytical data from these techniques.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Stephen P.H. Alexander ◽  
Andrew J. Irving

GPR18, GPR55 and GPR119 (provisional nomenclature), although showing little structural similarity to CB1 and CB2 cannabinoid receptors, respond to endogenous agents analogous to the endogenous cannabinoid ligands, as well as some natural/synthetic cannabinoid receptor ligands [98]. Although there are multiple reports to indicate that GPR18, GPR55 and GPR119 can be activated in vitro by N-arachidonoylglycine, lysophosphatidylinositol and N-oleoylethanolamide, respectively, there is a lack of evidence for activation by these lipid messengers in vivo. As such, therefore, these receptors retain their orphan status.


1999 ◽  
Vol 82 (3) ◽  
pp. 1286-1294 ◽  
Author(s):  
Jane M. Sullivan

Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calcium channels that support neurotransmitter release in these cells, making modulation of these channels a candidate for cannabinoid-receptor–mediated effects on synaptic transmission. Whole cell patch-clamp recordings of glutamatergic neurons cultured from the CA1 and CA3 regions of the hippocampus were used to identify the mechanisms of the effects of cannabinoids on synaptic transmission. Cannabinoid receptor activation reduced excitatory postsynaptic current (EPSC) size by ∼50% but had no effect on the amplitude of spontaneous miniature EPSCs (mEPSCs). This reduction in EPSC size was accompanied by an increase in paired-pulse facilitation measured in low (1 mM) extracellular calcium and by a decrease in paired-pulse depression measured in normal (2.5 mM) extracellular calcium. Together, these results strongly support the hypothesis that cannabinoid receptor activation decreases EPSC size by reducing release of neurotransmitter presynaptically while having no effect on postsynaptic sensitivity to glutamate. Further experiments were done to identify the molecular mechanisms underlying this cannabinoid-receptor–mediated decrease in neurotransmitter release. Cannabinoid receptor activation had no effect on the size of the presynaptic pool of readily releasable neurotransmitter-filled vesicles, eliminating reduction in pool size as a mechanism for cannabinoid-receptor–mediated effects. After blockade of Q- and N-type calcium channels with ω-agatoxin TK and ω-conotoxin GVIA; however, activation of cannabinoid receptors reduced EPSC size by only 14%. These results indicate that cannabinoid receptor activation reduces the probability that neurotransmitter will be released in response to an action potential via an inhibition of presynaptic Q- and N-type calcium channels. This molecular mechanism most likely contributes to the impairment of learning and memory produced by cannabinoids and may participate in the analgesic, antiemetic, and anticonvulsive effects of these drugs as well.


2018 ◽  
Vol 32 (7) ◽  
pp. 793-801 ◽  
Author(s):  
Leslie A King ◽  
John M Corkery

An index of fatal toxicity for new psychoactive substances has been developed based solely on information provided on death certificates. An updated index of fatal toxicity (Tf), as first described in 2010, was calculated based on the ratio of deaths to prevalence and seizures for the original five substances (amphetamine, cannabis, cocaine/crack, heroin and 3,4-methylenedioxymethylamphetamine)*. These correlated well with the 2010 index. Deaths were then examined for cases both where the substance was and was not found in association with other substances. This ratio (sole to all mentions; S/A) was then calculated for deaths in the period 1993 to 2016. This new measure of fatal toxicity, expressed by S/A, was well-correlated with the index Ln (Tf) of the original reference compounds. The calculation of S/A was then extended to a group of new psychoactive substances where insufficient prevalence or seizure data were available to directly determine a value of Tf by interpolation of a graph of Tf versus S/A. Benzodiazepine analogues had particularly low values of S/A and hence Tf. By contrast, γ-hydroxybutyrate/γ-butyrolactone, α-methyltryptamine, synthetic cannabinoid receptor agonists and benzofurans had a higher fatal toxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayat Zagzoog ◽  
Asher L. Brandt ◽  
Tallan Black ◽  
Eunhyun D. Kim ◽  
Riley Burkart ◽  
...  

AbstractThe first synthetic cannabinoid receptor agonists (SCRAs) were designed as tool compounds to study the endocannabinoid system’s two predominant cannabinoid receptors, CB1R and CB2R. Unfortunately, novel SCRAs now represent the most rapidly proliferating novel psychoactive substances (NPS) of abuse globally. Unlike ∆9-tetrahydrocannabinol, the CB1R and CB2R partial agonist and the intoxicating constituent of Cannabis, many SCRAs characterized to date are full agonists of CB1R. Gaining additional insight into the pharmacological activity of these SCRAs is critical to assess and regulate NPSs as they enter the marketplace. The purpose of this study was to assess select SCRAs recently identified by Canadian police, border service agency, private companies and the illicit market as potential CB1R and CB2R agonists. To this end, fifteen SCRAs were screened for in vitro activity and in silico interactions at CB1R and CB2R. Several SCRAs were identified as being highly biased for cAMP inhibition or βarrestin2 recruitment and receptor subtype selectivity between CB1R and CB2R. The indazole ring and halogen-substituted butyl or pentyl moieties were identified as two structural features that may direct βarrestin2 bias. Two highly-biased SCRAs—JWH-018 2′-napthyl-N-(3-methylbutyl) isomer (biased toward cAMP inhibition) and 4-fluoro MDMB-BINACA (biased toward βarrestin2 recruitment) displayed unique and differential in vivo activity in mice. These data provide initial insight into the correlations between structure, signalling bias, and in vivo activity of the SCRAs.


2016 ◽  
Vol 33 (S1) ◽  
pp. S115-S116 ◽  
Author(s):  
L. Galindo ◽  
M. Grifell ◽  
P. Quintana ◽  
A. Palma ◽  
J. Tirado ◽  
...  

IntroductionSince 2004, herbal mixtures for smoking use have been sold under the generic brand “Spice”. Many of them contain synthetic cannabinoids (agonists of the cannabinoid receptors). JWH-018 was one of the first spice drugs. There is no scientific evidence of their effects on humans, except cases of intoxications and users opinions.ObjectiveThe present study describes the presence of the synthetic cannabinoids JWH's and their characteristics in the samples delivered for analysis to the harm reduction NGO Energy Control from 2010 to 2014 in Spain.MethodsFrom 15,814 samples analyzed from 2010 to 2014, those containing synthetic cannabinoids JWH's were studied (n = 47). Analysis was done by gas chromatography–mass spectrometry.ResultsFrom these 47 samples containing JWH, 55% were delivered as “legal highs” (n = 21) and 44% as JWH. Most common presentations were powder 47% and herbals 32%. Samples containing JWH 45%(n = 21) were mixed with more than one kind of JWH or were adulterated and other active principles were found 28% (n = 13) JWH-018, 11% (n = 5) JWH-210, 8% (n = 4) JWH-081 and the 6% WH-250 (n = 3). Origin of the sample was Catalunya 23% (n = 11), other provinces of Spain 46% (n = 22); other EU countries 23% (n = 11) and internet-unknown country 8% (n = 8). From the (n = 47) samples, were delivered (n = 16) in 2012, (n = 12) in 2013, (n = 11) in 2011, (n = 3) in 2010 and (n = 3) in 2014.ConclusionJWH'S represent a low percentage of new psychoactive substances analyzed. Its presence in the market seems decreasing.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2013 ◽  
Vol 304 (2) ◽  
pp. G181-G192 ◽  
Author(s):  
Thomas Michler ◽  
Martin Storr ◽  
Johannes Kramer ◽  
Stefanie Ochs ◽  
Antje Malo ◽  
...  

The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB1) and 2 (CB2). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH2-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB1−/−, and MK2−/− mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB1 and CB2 are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB2 on apoptotic cells occurred. The unselective CB1/CB2 agonist HU210 ameliorated pancreatitis in wild-type and CB1−/− mice, indicating that this effect is mediated by CB2. Furthermore, blockade of CB2, not CB1, with selective antagonists engraved pathology. Stimulation with a selective CB2 agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2−/− mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2−/− mouse model we reveal a novel CB2-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.


Sign in / Sign up

Export Citation Format

Share Document