scholarly journals The Role of Beta-Frequency Neural Oscillations in Motor Control

2012 ◽  
Vol 32 (2) ◽  
pp. 403-404 ◽  
Author(s):  
N. J. Davis ◽  
S. P. Tomlinson ◽  
H. M. Morgan
2022 ◽  
Vol 15 ◽  
Author(s):  
José Luis Ulloa

The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.


1995 ◽  
Vol 8 (1) ◽  
pp. 27-49 ◽  
Author(s):  
Dana M. Schneider ◽  
Richard A. Schmidt
Keyword(s):  

Author(s):  
Dianne E. Andreotti ◽  
Sean G. T. Gibbons ◽  
Francesco Cantarelli
Keyword(s):  

2021 ◽  
Author(s):  
Ignacio Saez ◽  
Jack Lin ◽  
Edward Chang ◽  
Josef Parvizi ◽  
Robert T. Knight ◽  
...  

AbstractHuman neuroimaging and animal studies have linked neural activity in orbitofrontal cortex (OFC) to valuation of positive and negative outcomes. Additional evidence shows that neural oscillations, representing the coordinated activity of neuronal ensembles, support information processing in both animal and human prefrontal regions. However, the role of OFC neural oscillations in reward-processing in humans remains unknown, partly due to the difficulty of recording oscillatory neural activity from deep brain regions. Here, we examined the role of OFC neural oscillations (<30Hz) in reward processing by combining intracranial OFC recordings with a gambling task in which patients made economic decisions under uncertainty. Our results show that power in different oscillatory bands are associated with distinct components of reward evaluation. Specifically, we observed a double dissociation, with a selective theta band oscillation increase in response to monetary gains and a beta band increase in response to losses. These effects were interleaved across OFC in overlapping networks and were accompanied by increases in oscillatory coherence between OFC electrode sites in theta and beta band during gain and loss processing, respectively. These results provide evidence that gain and loss processing in human OFC are supported by distinct low-frequency oscillations in networks, and provide evidence that participating neuronal ensembles are organized functionally through oscillatory coherence, rather than local anatomical segregation.


2020 ◽  
Vol 3 ◽  
pp. 34
Author(s):  
Kathy L. Ruddy ◽  
David M. Cole ◽  
Colin Simon ◽  
Marc T. Bächinger

The occurrence of neuronal spikes recorded directly from sensory cortex is highly irregular within and between presentations of an invariant stimulus. The traditional solution has been to average responses across many trials. However, with this approach, response variability is downplayed as noise, so it is assumed that statistically controlling it will reveal the brain’s true response to a stimulus. A mounting body of evidence suggests that this approach is inadequate. For example, experiments show that response variability itself varies as a function of stimulus dimensions like contrast and state dimensions like attention. In other words, response variability has structure, is therefore potentially informative and should be incorporated into models which try to explain neural encoding. In this article we provide commentary on a recently published study by Coen-Cagli and Solomon that incorporates spike variability in a quantitative model, by explaining it as a function of divisive normalization. We consider the potential role of neural oscillations in this process as a potential bridge between the current microscale findings and response variability at the mesoscale/macroscale level.


2019 ◽  
Vol 31 (8) ◽  
pp. 1205-1215 ◽  
Author(s):  
Victor J. Boucher ◽  
Annie C. Gilbert ◽  
Boutheina Jemel

Studies that use measures of cerebro-acoustic coherence have shown that theta oscillations (3–10 Hz) entrain to syllable-size modulations in the energy envelope of speech. This entrainment creates sensory windows in processing acoustic cues. Recent reports submit that delta oscillations (<3 Hz) can be entrained by nonsensory content units like phrases and serve to process meaning—though such views face fundamental problems. Other studies suggest that delta underlies a sensory chunking linked to the processing of sequential attributes of speech sounds. This chunking associated with the “focus of attention” is commonly manifested by the temporal grouping of items in sequence recall. Similar grouping in speech may entrain delta. We investigate this view by examining how low-frequency oscillations entrain to three types of stimuli (tones, nonsense syllables, and utterances) having similar timing, pitch, and energy contours. Entrainment was indexed by “intertrial phase coherence” in the EEGs of 18 listeners. The results show that theta oscillations at central sites entrain to syllable-size elements in speech and tones. However, delta oscillations at frontotemporal sites specifically entrain to temporal groups in both meaningful utterances and meaningless syllables, which indicates that delta may support but does not directly bear on a processing of content. The findings overall suggest that, although theta entrainment relates to a processing of acoustic attributes, delta entrainment links to a sensory chunking that relates to a processing of properties of articulated sounds. The results also show that measures of intertrial phase coherence can be better suited than cerebro-acoustic coherence in revealing delta entrainment.


Sign in / Sign up

Export Citation Format

Share Document