Synthesis of I-131 labelled iodine species relevant during severe nuclear accidents in light water reactors

2013 ◽  
Vol 101 (10) ◽  
pp. 675-680 ◽  
Author(s):  
S. Tietze ◽  
M. R. St. J. Foreman ◽  
C. Ekberg

Summary Methods for the small scale synthesis of I-131 labelled iodine species relevant to severe nuclear accidents in light water reactors have been developed. The introduced methods allow the synthesis of impurity free, volatile, inorganic elemental iodine and volatile, organic iodides such as methyl- and ethyl iodide, as well as butyl iodide, chloroiodomethane, allyl iodide and benzyl iodide with ease. The radioactive iodine containing products are sufficiently stable to allow their storage for later use. Due to their volatility the liquid species can be easily converted into gaseous species and thus can be used in research in liquid and gaseous phase. The primary motivation for the development of these synthesis methods is to study the behaviour of volatile iodine species under the conditions of a severe nuclear accident in a light water reactor. Thus, the chemicals involved in the synthesis are chosen in a way to not generate impurities (chlorine and organic solvents) in the products which interfere with competing reactions relevant during a severe nuclear accident. Teknopox Aqua VA epoxy paint, which is used in Swedish light water reactor containments, and its reactions with the produced iodine species are described. The synthesised iodine species undergo chemisorption on paint films. Different to elemental iodine, the organic iodides are non-reactive with copper surfaces. The sorbed iodine species are partly re-released mainly in form of organic iodides and not as elemental iodine when the exposed paint films are heat treated. The partitioning and hydrolysis behaviour of gaseous methyl- and ethyl iodide between containment gas phase and water pools is found to be similar. The methods have been designed to minimise the use of harmful materials and the production of radioactive waste.

Author(s):  
Jim Chapman ◽  
Stephen M. Hess

The regulatory framework for the current generation of operating plants and advanced light water reactors (ALWRs) planned for near term construction has evolved over several decades to permit effective regulation of the light water reactor designs. To address other reactor types, development of a framework that possesses the attributes of being technology neutral, risk-informed and performance-based with corresponding processes (regulations and guidance) is ongoing by several U.S. and international organizations. A key design and operating principle which is applied to existing plants and will continue to be applied to future plants is defense-in-depth. The advent of advanced reactor designs, some of which are not based on light water reactor technology, provides incentive for changes in the regulatory framework in several areas, including defense-in-depth practices. To support development of an integrated framework, the Electric Power Research Institute (EPRI) conducted research to identify and assess specific elements of possible technology neutral, risk-informed, performance based frameworks that had been proposed by others. The intent was to develop a preliminary framework based on the results of this review and evaluation and to provide recommendations in areas where additional development and testing would appear to be most beneficial. “Technical Elements of a Risk-Informed, Technology-Neutral Design and Licensing Framework for New Nuclear Plants”, EPRI Report 1016150 documents this research (Reference [1]). For defense-in-depth (D-in-D) existing viewpoints from various sources were compared and an alternative integrated approach which addresses key issues was developed. These alternative views are contained in publications such as NUREG-1860 [2], Regulatory Guide 1.174 [6], IAEA Safety Standards Series No. NS-R-1 [3], IAEA 75-INSAG-3 Revision 1 [4], INSAG-12 [4], and IAEA INSAG-10 [5]. The results of this research support the ongoing efforts to develop standards and guidance for advanced plants with safety characteristics which differ from existing and advanced LWRs.


2014 ◽  
Vol 666 ◽  
pp. 144-148
Author(s):  
Zhi Bin Liu ◽  
Jin Ma ◽  
Bing Shu Wang ◽  
Xin Hui Duan

Recent progress in the development of coarse-mesh nodal methods for the numerical solution of the neutron diffusion and transport equations is reviewed. Compared with earlier nodal simulators, more recent nodal diffusion methods are characterized by the systematic derivation of spatial coupling relationships which are entirely consistent with the multi-group diffusion equation. These relationships most often are derived by developing approximations to the one-dimensional equations obtained by integrating the multidimensional diffusion equation over directions transverse to each coordinate axis. The objective of this research is to develop accurate and efficient spatial homogenization method for coarse mesh analysis of light water reactors. More sophisticated methods for computing approximate equivalence parameters are also introduced and make use of nonlinear iterations between homogenized reactor calculations and local fixed-source calculations to compute equivalence parameters. This special feature induces the need for the study on homogeneous parameters of light water reactor which takes phenomena of different scale and their interaction into account by means of the nodal diffusion method.


Sign in / Sign up

Export Citation Format

Share Document