elemental iodine
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

Compounds ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 3-24
Author(s):  
Njomza Ajvazi ◽  
Stojan Stavber

The iodination of organic compounds is of great importance in synthetic organic chemistry. It opens comprehensive approaches for the synthesis of various biologically active compounds. The recent advances in iodination of organic compounds using elemental iodine or iodides, covering the last thirteen years, are the objective of the present review.


2021 ◽  
Author(s):  
Marina López-Álvarez ◽  
Herb Ulmer ◽  
Nico Klay ◽  
Jan Maarten van Dijl

Povidone-iodine has been a true success story in the fight against infections by harnessing the antimicrobial and antiviral properties of elemental iodine for water-based applications. However, to date there has been little success in implementing iodine attributes in water-insoluble engineering plastics. Here, we describe the first development of biocidal active polyamide- and polyurethane-iodine complexes at laboratory and commercially relevant scales. These polymer-iodine materials are active against a broad range of microorganisms, including bacteria, yeast and fungi, and can be used as base materials for medical devices. The use of new polymer-iodine complexes for infection prevention in medical devices, such as sutures, catheters and drains, or wound care is expected to have significant positive effects at reducing healthcare-acquired infections. In addition, the materials are expected to find significant applications in other fields, such as air handling with the production of biocidal face masks and air filters to control spread of pathogens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254341
Author(s):  
Zoltán Köntös

Background Aerosolization of respiratory droplets is considered the main route of coronavirus disease 2019 (COVID-19). Therefore, reducing the viral load of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) shed via respiratory droplets is potentially an ideal strategy to prevent the spread of the pandemic. The in vitro virucidal activity of intranasal Povidone-Iodine (PVP-I) has been demonstrated recently to reduce SARS-CoV-2 viral titres. This study evaluated the virucidal activity of the aqueous solution of Iodine-V (a clathrate complex formed by elemental iodine and fulvic acid) as in Essential Iodine Drops (EID) with 200 μg elemental iodine/ml content against SARS-CoV-2 to ascertain whether it is a better alternative to PVP-I. Methods SARS-CoV-2 (USAWA1/2020 strain) virus stock was prepared by infecting Vero 76 cells (ATCC CRL-1587) until cytopathic effect (CPE). The virucidal activity of EID against SARS-CoV-2 was tested in three dilutions (1:1; 2:1 and 3:1) in triplicates by incubating at room temperature (22 ± 2°C) for either 60 or 90 seconds. The surviving viruses from each sample were quantified by a standard end-point dilution assay. Results EID (200 μg iodine/ml) after exposure for 60 and 90 seconds was compared to controls. In both cases, the viral titre was reduced by 99% (LRV 2.0). The 1:1 dilution of EID with virus reduced SARS-CoV-2 virus from 31,623 cell culture infectious dose 50% (CCID50) to 316 CCID50 within 90 seconds. Conclusion Substantial reductions in LRV by Iodine-V in EID confirmed the activity of EID against SARS-CoV-2 in vitro, demonstrating that Iodine-V in EID is effective at inactivating the virus in vitro and therefore suggesting its potential application intranasally to reduce SARS-CoV-2 transmission from known or suspected COVID-19 patients.


Endocrinology ◽  
2021 ◽  
Vol 162 (3) ◽  
Author(s):  
Valerie Anne Galton ◽  
P Reed Larsen ◽  
Marla J Berry

Abstract In this minireview, we provide a historical outline of the events that led to the identification and characterization of the deiodinases, the recognition that deiodination plays a major role in thyroid hormone action, and the cloning of the 3 deiodinase genes. The story starts in 1820, when it was first determined that elemental iodine was important for normal thyroid function. Almost 100 years later, it was found that the primary active principle of the gland, T4, contains iodine. Once radioactive iodine became available in the 1940s, it was demonstrated that the metabolism of T4 included deiodination, but at the time it was assumed to be merely a degradative process. However, this view was questioned after the discovery of T3 in 1952. We discuss in some detail the events of the next 20 years, which included some failures followed by the successful demonstration that deiodination is indeed essential to normal thyroid hormone action. Finally, we describe how the 3 deiodinases were identified and characterized and their genes cloned.


2020 ◽  
Author(s):  
Köntös Zoltán

AbstractBackgroundAerosolization of respiratory droplets is considered the main route of coronavirus disease 2019 (COVID-19). Therefore, reducing the viral load of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) shed via respiratory droplets is potentially an ideal strategy to prevent the spread of the pandemic. The in vitro virucidal activity of intranasal Povidone-Iodine (PVP-I) has been demonstrated recently to reduce SARS-CoV-2 viral titres. This study evaluated the virucidal activity of the aqueous solution of Iodine-V (a clathrate complex formed by elemental iodine and fulvic acid) as in Essential Iodine Drops (EID) with 200 μg elemental iodine/ml content against SARS-CoV-2 to ascertain whether it is a better alternative to PVP-I.MethodsSARS-CoV-2 (USAWA1/2020 strain) virus stock was prepared by infecting Vero 76 cells (ATCC CRL-1587) until cytopathic effect (CPE). The virucidal activity of EID against SARS-CoV-2 was tested in three dilutions (1:1; 2:1 and 3:1) in triplicates by incubating at room temperature (22 ± 2°C) for either 60 or 90 seconds. The surviving viruses from each sample were quantified by a standard end-point dilution assay.ResultsEID (200 μg iodine/ml) after exposure for 60 and 90 seconds was compared to controls. In both cases, the viral titre was reduced by 99% (LRV 2.0). The 1:1 dilution of EID with virus reduced SARS-CoV-2 virus from 31,623 cell culture infectious dose 50% (CCCID50) to 316 CCID50 within 90 seconds.ConclusionSubstantial reductions in LRV by Iodine-V in EID confirmed the activity of EID against SARS-CoV-2 in vitro, demonstrating that Iodine-V in EID is effective at inactivating the virus in vitro and therefore suggesting its potential application intranasally to reduce SARS-CoV-2 transmission from known or suspected COVID-19 patients.


2020 ◽  
Author(s):  
Zoltán Köntös

Abstract Background: Aerosolization of respiratory droplets is considered the main route of coronavirus disease 2019 (COVID-19). Therefore, reducing the viral load of Severe Acute Respiratory SyndromeCoronavirus 2 (SARS-CoV-2) shed via respiratory dropletsis potentially an ideal strategy to prevent the spread of the pandemic. The in vitro virucidal activity of intranasal Povidone-Iodine (PVP-I) has been demonstrated recently to reduce SARS-CoV-2 viral titres. This study evaluated the virucidal activity of the aqueous solution of Iodine-V (a clathrate complex formed by elemental iodine and fulvic acid) as in Essential Iodine Drops (EID) with 200 µg elemental iodine/ml content against SARS-CoV-2 to ascertain whether it is a better alternative to PVP-I. Methods: SARS-CoV-2 (USAWA1/2020 strain) virus stock was prepared by infecting Vero 76 cells (ATCC CRL-1587) until cytopathic effect (CPE). The virucidal activity of EID against SARS-CoV-2 was tested in three dilutions (1:1; 2:1 and 3:1) in triplicates by incubating at room temperature (22 ± 2°C) for either 60 or 90 seconds. The surviving viruses from each sample were quantified by a standard end-point dilution assay. Results: EID (200 µg iodine/ml) after exposure for 60 and 90 seconds was compared to controls. In both cases, the viral titre was reduced by 99% (LRV 2.0). The 1:1 dilution of EID with virus reduced SARS-CoV-2 virus from 31,623 cell culture infectious dose 50% (CCCID50) to 316 CCID50 within 90 seconds. Conclusion: Substantial reductions in LRV by Iodine-V in EID confirmed the activity of EID against SARSCoV-2 in vitro, demonstrating that Iodine-V in EID is effective at inactivating the virus in vitro and therefore suggesting its potential application intranasally to reduce SARS-CoV-2 transmission from known or suspected COVID-19 patients.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 697-708
Author(s):  
Willi Kantlehner ◽  
Heinz Malik ◽  
Ralf Kreß

AbstractCyclopropylacetylene and N,N,N′,N′,N′′,N′′-hexamethylguanidinium chloride (1a) react to give the orthoamide derivative 8c, in the presence of sodium hydride. 8c is transformed by elemental iodine to the vinylogous guanidinium salt 6f. Anion metathesis with the salts 5a, 5e, 6g delivers vinylogous guanidinium salts 5e–5i, 12a with counter ions derived from carbon acids (tricyanomethane, 1,1,3,3-tetracyano-propene). Phenylogous amidinium salts 15 guanidinium salts 19, 21 and the phenylogous orthoamide derivatives of formic acid 18 and carbonic acid 33 have been prepared.


2020 ◽  
Author(s):  
Revannath L. Sutar ◽  
Nikita Erochok ◽  
Stefan Huber

A series of cationic monodentate and bidentate iodo(benz)­imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a <i>syn</i>-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BAr<sup>F</sup><sub>4</sub> salts, PF<sub>6</sub> or OTf salts were either inactive or showed background reaction. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.


2020 ◽  
Author(s):  
Revannath L. Sutar ◽  
Nikita Erochok ◽  
Stefan Huber

A series of cationic monodentate and bidentate iodo(benz)­imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a <i>syn</i>-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BAr<sup>F</sup><sub>4</sub> salts, PF<sub>6</sub> or OTf salts were either inactive or showed background reaction. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.


2020 ◽  
Vol 219 ◽  
pp. 106253
Author(s):  
Oumar Telly Bah ◽  
Didier Hebert ◽  
Olivier Connan ◽  
Luc Solier ◽  
Philippe Laguionie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document