Determination of natural radioactivity in building materials used in the Karachi area by γ-ray spectrometry and INAA

2004 ◽  
Vol 92 (12) ◽  
Author(s):  
Jamshed H. Zaidi ◽  
M. Arif ◽  
I. Fatima

SummarySamples of sand, stone and manufactured building materials collected from Karachi area have been analyzed for the primordial natural radionuclides

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Willis Otieno Gor Odongo ◽  
Margaret Chege ◽  
Nadir Hashim ◽  
Shinji Tokonami ◽  
Kranrod Chutima ◽  
...  

The areas around Homa and Ruri hills in Homa Bay County in Kenya are associated with high background radiation levels. The activity concentration of the natural radionuclides (226Ra, 232Th, and 40K) in earthen building materials used in the areas of Homa and Ruri hills has been measured using a NaI (Tl) detector in this work. The measured values of radioactivity concentrations are used to estimate the associated radiological risk. The earthen building material samples from Ruri registered relatively high 232Th concentration values averaging 1094 ± 55 Bq/kg, nearly three times those of the samples from Homa. 226Ra level was not significantly different in both regions with Homa reporting 129 ± 10 Bq/kg and Ruri 111 ± 6 Bq/kg. 40K was however higher in the samples from Homa by an approximate factor of 2 relative to those from Ruri where the activity concentration was 489 ± 24 Bq/kg. The radium equivalents for 226Ra, 232Th, and 40K in the samples from Ruri were 111 ± 9, 1564 ± 125, and 38 ± 3 Bq/kg, while in Homa, the values were 129 ± 10, 570 ± 46, and 69 ± 5 Bq/kg, respectively. The calculated value of total radium equivalent in Ruri was 1713 ± 137 Bq/kg which was two times higher than that of Homa. 232Th contributed about 74% and 91% to the total radium equivalent in Homa and Ruri, respectively; thus, it was the one with the largest contribution to radiation exposure in both regions. The average indoor annual effective dose rates were 1.74 ± 0.14 and 3.78 ± 0.30 mSv/y in Homa and Ruri, respectively, both of which were above the recommended safety limit of 1 mSv/y.


2021 ◽  
Vol 82 (3) ◽  
pp. 186-188
Author(s):  
Ekaterina Serafimova ◽  
Vilma Petkova

The negative impact of natural inorganic building materials on people during their life cycle can be potentially significant, in case of presence of radionuclides, due to the very long period of negative radioactive impact. International experience shows that effective prevention of public health and reduction of exposure involves a wide range of actions, which has been achieved through the development and preparation of a strategy at the national level. The content of natural radionuclides in rock materials for construction purposes, taken from different buildings in Southern Bulgaria, has been determined. The obtained data are in norms under the Bulgarian legislation, but for some samples with values close to the maximum permissible concentrations.


2017 ◽  
Vol 17 (2) ◽  
pp. 406-414
Author(s):  
Gülçin Bilgici Cengiz ◽  
İlhami Aras ◽  
Hüseyin Ertap ◽  
Mevlüt Karabulut

2020 ◽  
Vol 15 (1) ◽  
pp. 107-118
Author(s):  
Daniel Hatungimana ◽  
Caner Taşköprü ◽  
Mutlu İçhedef ◽  
Müslim Murat Saç ◽  
Şemsi Yazıcı ◽  
...  

ABSTRACT The aim of this study is to determine the radon and natural radioactivity concentrations of some building materials and to assess the radiation hazard associated with those mortar materials when they are used in the construction of dwellings. Radon measurements were realized by using LR-115 Type 2 solid state nuclear track detectors. Radon activity concentrations of these materials were found to vary between 130.00 ± 11.40 and 1604.06 ± 40.5 Bq m−3. The natural radioactivity in selected mortar materials was analyzed by using scintillation gamma spectroscopy. The activity concentrations for 226Ra, 232Th and 40K for the studied mortar materials ranged from ND to 48.5 ± 7.0 Bq kg−1, ND to 41.0 ± 6.4 Bq kg−1 and ND to 720.4 ± 26.8 Bq kg−1, respectively. Radium equivalent activities, external and internal hazard indexes, gamma and alpha indexes and absorbed gamma dose rates were calculated to assess the radiation hazard of the natural radioactivity in studied samples. The calculated Raeq values of all samples were found to be lower than the limit of 370 Bq kg−1 set for building materials. The estimated hazard index values were found to be under the unity and the absorbed dose rate values were also below the worldwide average of 84 nGy h−1.


Sign in / Sign up

Export Citation Format

Share Document