On the Pitman Closeness Criterion from the Decision-Theoretic Point of View

1996 ◽  
Vol 14 (3) ◽  
Author(s):  
Andrew L. Rukhin
1988 ◽  
Vol 53 (4) ◽  
pp. 1177-1187
Author(s):  
W. A. MacCaull

Using formally intuitionistic logic coupled with infinitary logic and the completeness theorem for coherent logic, we establish the validity, in Grothendieck toposes, of a number of well-known, classically valid theorems about fields and ordered fields. Classically, these theorems have proofs by contradiction and most involve higher order notions. Here, the theorems are each given a first-order formulation, and this form of the theorem is then deduced using coherent or formally intuitionistic logic. This immediately implies their validity in arbitrary Grothendieck toposes. The main idea throughout is to use coherent theories and, whenever possible, find coherent formulations of formulas which then allow us to call upon the completeness theorem of coherent logic. In one place, the positive model-completeness of the relevant theory is used to find the necessary coherent formulas.The theorems here deal with polynomials or rational functions (in s indeterminates) over fields. A polynomial over a field can, of course, be represented by a finite string of field elements, and a rational function can be represented by a pair of strings of field elements. We chose the approach whereby results on polynomial rings are reduced to results about the base field, because the theory of polynomial rings in s indeterminates over fields, although coherent, is less desirable from a model-theoretic point of view. Ultimately we are interested in the models.This research was originally motivated by the works of Saracino and Weispfenning [SW], van den Dries [Dr], and Bunge [Bu], each of whom generalized some theorems from algebraic geometry or ordered fields to (commutative, von Neumann) regular rings (with unity).


2015 ◽  
Vol 58 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Jason Greene Boynton ◽  
Jim Coykendall

AbstractIt is well known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the current understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity.


1985 ◽  
Vol 50 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Franco Montagna ◽  
Andrea Sorbi

When dealing with axiomatic theories from a recursion-theoretic point of view, the notion of r.e. preordering naturally arises. We agree that an r.e. preorder is a pair = 〈P, ≤P〉 such that P is an r.e. subset of the set of natural numbers (denoted by ω), ≤P is a preordering on P and the set {〈;x, y〉: x ≤Py} is r.e.. Indeed, if is an axiomatic theory, the provable implication of yields a preordering on the class of (Gödel numbers of) formulas of .Of course, if ≤P is a preordering on P, then it yields an equivalence relation ~P on P, by simply letting x ~Py iff x ≤Py and y ≤Px. Hence, in the case of P = ω, any preordering yields an equivalence relation on ω and consequently a numeration in the sense of [4]. It is also clear that any equivalence relation on ω (hence any numeration) can be regarded as a preordering on ω. In view of this connection, we sometimes apply to the theory of preorders some of the concepts from the theory of numerations (see also Eršov [6]).Our main concern will be in applications of these concepts to logic, in particular as regards sufficiently strong axiomatic theories (essentially the ones in which recursive functions are representable). From this point of view it seems to be of some interest to study some remarkable prelattices and Boolean prealgebras which arise from such theories. It turns out that these structures enjoy some rather surprising lattice-theoretic and universal recursion-theoretic properties.After making our main definitions in §1, we examine universal recursion-theoretic properties of some r.e. prelattices in §2.


Author(s):  
Terry Millar

AbstractCountable homogeneous models are ‘simple’ objects from a model theoretic point of view. From a recursion theoretic point of view they can be complex. For instance the elementary theory of such a model might be undecidable, or the set of complete types might be recursively complex. Unfortunately even if neither of these conditions holds, such a model still can be undecidable. This paper investigates countable homogeneous models with respect to a weaker notion of decidability called almost decidable. It is shown that for theories that have only countably many type spectra, any countable homogeneous model of such a theory that has a Σ2 type spectrum is almost decidable.


2013 ◽  
Vol 15 (03) ◽  
pp. 1340019 ◽  
Author(s):  
JOAQUIN SANCHEZ-SORIANO

In this paper, we review some of the literature in which different applications to engineering problems are analyzed from a game-theoretic point of view. The revision is far from exhaustive and the sole purpose of this paper is to provide an approximate state-of-the-art on this topic. Likewise, we try throughout the paper to highlight what game theory could contribute to the study of engineering problems.


Sign in / Sign up

Export Citation Format

Share Document