2018 ◽  
Vol 1 (1) ◽  
pp. 2-19
Author(s):  
Mahmood Sh. Majeed ◽  
Raid W. Daoud

A new method proposed in this paper to compute the fitness in Genetic Algorithms (GAs). In this new method the number of regions, which assigned for the population, divides the time. The fitness computation here differ from the previous methods, by compute it for each portion of the population as first pass, then the second pass begin to compute the fitness for population that lye in the portion which have bigger fitness value. The crossover and mutation and other GAs operator will do its work only for biggest fitness portion of the population. In this method, we can get a suitable and accurate group of proper solution for indexed profile of the photonic crystal fiber (PCF).


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tng C. H. John ◽  
Edmond C. Prakash ◽  
Narendra S. Chaudhari

This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006). We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.


Author(s):  
João Victor Borges Dos Santos ◽  
Roberto Simoni ◽  
Andrea Piga Carboni ◽  
Daniel Martins

2016 ◽  
Vol 693 ◽  
pp. 84-88
Author(s):  
Xiao Ping Li

Genetic Algorithms is a new method, which has good robustness in optimization design for complex system. In this paper, we make the mathematical model of optimization design for the main-axis in big power inverted umbrella aeration machine by studying Genetic Algorithms. Using coding method, we complete the optimization design of the main-axis in big power inverted umbrella aeration machine.


2013 ◽  
Vol 4 (2) ◽  
pp. 29-40 ◽  
Author(s):  
Hossein Zoulfaghari ◽  
Javad Nematian ◽  
Nader Mahmoudi ◽  
Mehdi Khodabandeh

The Resource Constrained Project Scheduling Problem (RCPSP) is a well-studied academic problem that has been shown to be well suited to optimization via Genetic Algorithms (GA). In this paper, a new method will be designed that would be able to solve RCPSP. This research area is very common in industry especially when a set of activities needs to be finished as soon as possible subject to two sets of constraints, precedence constraints and resource constraints. The presented algorithm in this paper is used to solve large scale RCPSP and improves solutions. Finally, for comparing, results are reported for the most famous classical problems that are taken from PSPLIB.


Sign in / Sign up

Export Citation Format

Share Document