Author(s):  
Gautam S. Prakash ◽  
Shanu Sharma

<p>Automated signature verification and forgery detection has many applications in the field of Bank-cheque processing,document  authentication, ATM access etc. Handwritten signatures have proved to be important in authenticating a person's identity, who is signing the document. In this paper a Fuzzy Logic and Artificial Neural Network Based Off-line Signature Verification and Forgery Detection System is presented. As there are unique and important variations in the feature elements of each signature, so in order to match a particular signature with the database, the structural parameters of the signatures along with the local variations in the signature characteristics are used. These characteristics have been used to train the artificial neural network. The system uses the features extracted from the signatures such as centroid, height – width ratio, total area, I<sup>st</sup> and II<sup>nd</sup> order derivatives, quadrant areas etc. After the verification of the signature the angle features are used in fuzzy logic based system for forgery detection.</p>



2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Aini Najwa Azmi ◽  
Dewi Nasien ◽  
Azurah Abu Samah

Over recent years, there has been an explosive growth of interest in the pattern recognition. For example, handwritten signature is one of human biometric that can be used in many areas in terms of access control and security. However, handwritten signature is not a uniform characteristic such as fingerprint, iris or vein. It may change to several factors; mood, environment and age. Signature Verification System (SVS) is a part of pattern recognition that can be a solution for such situation. The system can be decomposed into three stages: data acquisition and preprocessing, feature extraction and verification. This paper presents techniques for SVS that uses Freeman chain code (FCC) as data representation. In the first part of feature extraction stage, the FCC was extracted by using boundary-based style on the largest contiguous part of the signature images. The extracted FCC was divided into four, eight or sixteen equal parts. In the second part of feature extraction, six global features were calculated. Finally, verification utilized k-Nearest Neighbour (k-NN) to test the performance. MCYT bimodal database was used in every stage in the system. Based on our systems, the best result achieved was False Rejection Rate (FRR) 14.67%, False Acceptance Rate (FAR) 15.83% and Equal Error Rate (EER) 0.43% with shortest computation, 7.53 seconds and 47 numbers of features.



Sign in / Sign up

Export Citation Format

Share Document