scholarly journals Simulation for water quality management using system dynamics modeling in the Bedadung Watershed, East Java, Indonesia

2022 ◽  
Vol 9 (2) ◽  
pp. 3217-3327
Author(s):  
Hendra Andiananta Pradana ◽  
Elida Novita ◽  
Bambang Herry Purnomo

The potential for pollution of rivers is influenced by river-water discharge and the distribution of pollution sources. This research aimed to examine recommendations for water quality management in the Bedadung River segment of the Patrang, Sumbersari, and Kaliwates Districts as an urban area of Jember Regency refer to simulations of the total pollution load capacity for 10 years (2016-2026) using a system dynamics modeling. The preparation of a system dynamics modeling used Powersim 5.0 software. It could represent holistic environmental management modeling. The input data were total suspended solid (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and the streamflow of the Bedadung River. The model scenarios were the business of usual, moderate, and optimistic scenarios involving environmental and socio-economic aspects. The medium-term and long-term recommendations for water quality management of the Bedadung River based on system dynamics simulation were respectively moderate scenario and optimistic scenario. The strategies of the moderate scenario were application of the best management practice method in agricultural cultivation, improving sanitation and domestic wastewater treatment, implementing clean production in the field of livestock and industry, as well as waste management on riverbanks. These alternative strategies for river water quality management can be used as consideration for protecting surface water sources in urban areas.

2019 ◽  
Vol 20 (2) ◽  
pp. 538-549
Author(s):  
Maoqing Duan ◽  
Xia Du ◽  
Wenqi Peng ◽  
Cuiling Jiang ◽  
Shijie Zhang

Abstract In northern China, river water originating from or flowing through forests often contains large amounts of oxygen-consuming organic substances, mainly humic substances. These substances are stable and not easily biodegradable, resulting in very high detection values of chemical oxygen demand. However, under natural conditions, the dissolved oxygen demand is not as high. Using experimental values to evaluate river water quality and the impact of human activities on water quality is thus unscientific and does not meet national development goals. In this study, the potential sources of high-concentration chemical oxygen demand in river water in two areas exposed to virtually no anthropogenic activities and strongly affected by humic substances, were analysed. The chemical oxygen demand contributed by humic substances (COD-HSs) was quantified using three methods. The results of water quality monitoring in 2017 and 2018 revealed that the chemical oxygen demand concentrations (5–44 mg/L) predominantly exceeded the standard (15 mg/L). The study results suggest that COD-HSs should be considered separately for objective evaluation and management of water quality, particularly in areas that are seriously affected by COD-HSs, to provide a scientific basis for formulating sustainable water quality management policies.


2016 ◽  
Vol 14 (2) ◽  
pp. 243-254 ◽  
Author(s):  
Siti Fatimah Che Osmi ◽  
M.A. Malek ◽  
M. Yusoff ◽  
N.H. Azman ◽  
W.M. Faizal

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
J. Liu ◽  
Y. P. Li ◽  
G. H. Huang

In this study, an interval fuzzy credibility-constrained programming (IFCP) method is developed for river water quality management. IFCP is derived from incorporating techniques of fuzzy credibility-constrained programming (FCP) and interval-parameter programming (IPP) within a general optimization framework. IFCP is capable of tackling uncertainties presented as interval numbers and possibility distributions as well as analyzing the reliability of satisfying (or the risk of violating) system’s constraints. A real-world case for water quality management planning of the Xiangxi River in the Three Gorges Reservoir Region (which faces severe water quality problems due to pollution from point and nonpoint sources) is then conducted for demonstrating the applicability of the developed method. The results demonstrate that high biological oxygen demand (BOD) discharge is observed at the Baishahe chemical plant and Gufu wastewater treatment plant. For nonpoint sources, crop farming generates large amounts of total phosphorus (TP) and total nitrogen (TN). The results are helpful for managers in not only making decisions of effluent discharges from point and nonpoint sources but also gaining insight into the tradeoff between system benefit and environmental requirement.


Sign in / Sign up

Export Citation Format

Share Document