scholarly journals Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis

2017 ◽  
Vol 36 (6) ◽  
pp. 816-829 ◽  
Author(s):  
Shen Wang ◽  
Ucheor B Choi ◽  
Jihong Gong ◽  
Xiaoyu Yang ◽  
Yun Li ◽  
...  
2021 ◽  
Author(s):  
Claire Gething ◽  
Joshua Ferrar ◽  
Bishal Misra ◽  
Giovanni Howells ◽  
Ucheor B. Choi

AbstractNeurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigate the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.


2011 ◽  
Vol 100 (3) ◽  
pp. 185a
Author(s):  
Jiajie Diao ◽  
Janghyun Yoo ◽  
Han-Ki Lee ◽  
Yoosoo Yang ◽  
Dae-Hyuk Kweon ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 26 (12) ◽  
pp. 3347-3359.e6 ◽  
Author(s):  
Hao Zhou ◽  
Ziqing Wei ◽  
Shen Wang ◽  
Deqiang Yao ◽  
Rongguang Zhang ◽  
...  

Traffic ◽  
2019 ◽  
Vol 20 (11) ◽  
pp. 841-850 ◽  
Author(s):  
Gregory E. Miner ◽  
Katherine D. Sullivan ◽  
Chi Zhang ◽  
Logan R. Hurst ◽  
Matthew L. Starr ◽  
...  

2008 ◽  
Vol 183 (2) ◽  
pp. 323-337 ◽  
Author(s):  
Toshiaki Sakisaka ◽  
Yasunori Yamamoto ◽  
Sumiko Mochida ◽  
Michiko Nakamura ◽  
Kouki Nishikawa ◽  
...  

Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.


2010 ◽  
Vol 68 ◽  
pp. e116-e117
Author(s):  
Kouhei Kunieda ◽  
Tomoaki Ida ◽  
Tomohiro Sawa ◽  
Takaaki Akaike ◽  
Makoto Itakura ◽  
...  

2019 ◽  
Author(s):  
Gregory E. Miner ◽  
Katherine D. Sullivan ◽  
Chi Zhang ◽  
Logan R. Hurst ◽  
Matthew L. Starr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document