scholarly journals Conformational Change of Syntaxin-3b in Regulating SNARE Complex Assembly in the Ribbon Synapses

2021 ◽  
Author(s):  
Claire Gething ◽  
Joshua Ferrar ◽  
Bishal Misra ◽  
Giovanni Howells ◽  
Ucheor B. Choi

AbstractNeurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigate the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.

2014 ◽  
Vol 205 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Stefano Vavassori ◽  
Andreas Mayer

Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca2+ ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca2+-binding protein Calmodulin promotes spontaneous release and SNARE complex formation via its interaction with the V0 sector of the V-ATPase.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Eric A Prinslow ◽  
Karolina P Stepien ◽  
Yun-Zu Pan ◽  
Junjie Xu ◽  
Josep Rizo

Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.


2006 ◽  
Vol 172 (2) ◽  
pp. 295-307 ◽  
Author(s):  
Jeffrey S. Van Komen ◽  
Xiaoyang Bai ◽  
Brenton L. Scott ◽  
James A. McNew

Membrane fusion in the secretory pathway is mediated by SNAREs (located on the vesicle membrane [v-SNARE] and the target membrane [t-SNARE]). In all cases examined, t-SNARE function is provided as a three-helix bundle complex containing three ∼70–amino acid SNARE motifs. One SNARE motif is provided by a syntaxin family member (the t-SNARE heavy chain), and the other two helices are contributed by additional t-SNARE light chains. The syntaxin family is the most conformationally dynamic group of SNAREs and appears to be the major focus of SNARE regulation. An NH2-terminal region of plasma membrane syntaxins has been assigned as a negative regulatory element in vitro. This region is absolutely required for syntaxin function in vivo. We now show that the required function of the NH2-terminal regulatory domain (NRD) of the yeast plasma membrane syntaxin, Sso1p, can be circumvented when t-SNARE complex formation is made intramolecular. Our results suggest that the NRD is required for efficient t-SNARE complex formation and does not recruit necessary scaffolding factors.


2017 ◽  
Vol 36 (6) ◽  
pp. 816-829 ◽  
Author(s):  
Shen Wang ◽  
Ucheor B Choi ◽  
Jihong Gong ◽  
Xiaoyu Yang ◽  
Yun Li ◽  
...  

2002 ◽  
Vol 115 (16) ◽  
pp. 3341-3351 ◽  
Author(s):  
Darshan K. Koticha ◽  
Ellen E. McCarthy ◽  
Giulia Baldini

SNAP-25 is an integral protein of the plasma membrane involved in neurotransmission and hormone secretion. The cysteine-rich domain of SNAP-25 is essential for membrane binding and plasma-membrane targeting. However, this domain is not required for SNARE complex formation and fusion of membranes in vitro. In this paper, we describe an `intact-cell'-based system designed to compare the effect of similar amounts of membrane-bound and soluble SNAP-25 proteins on regulated exocytosis. In transfected neuroblastoma cells,Botulinum neurotoxin E (BoNT/E), a protease that cleaves SNAP-25, blocks regulated release of hormone. However, hormone release is rescued by expressing a wild-type SNAP-25 protein resistant to the toxin. BoNT/E-resistant SNAP-25 proteins lacking the cysteine-rich domain or with all the cysteines substituted by alanines do not form SNARE complexes or rescue regulated exocytosis when expressed at the same level as membrane-bound SNAP-25, which is approximately four-fold higher than the endogenous protein. We conclude that the cysteine-rich domain of SNAP-25 is essential for Ca2+-dependent hormone release because, by targeting SNAP-25 to the plasma membrane, it increases its local concentration, leading to the formation of enough SNARE complexes to support exocytosis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karolina P. Stepien ◽  
Eric A. Prinslow ◽  
Josep Rizo

Abstract Munc18-1 and Munc13-1 orchestrate assembly of the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, allowing exquisite regulation of neurotransmitter release. Non-regulated neurotransmitter release might be prevented by αSNAP, which inhibits exocytosis and SNARE-dependent liposome fusion. However, distinct mechanisms of inhibition by αSNAP were suggested, and it is unknown how such inhibition is overcome. Using liposome fusion assays, FRET and NMR spectroscopy, here we provide a comprehensive view of the mechanisms underlying the inhibitory functions of αSNAP, showing that αSNAP potently inhibits liposome fusion by: binding to syntaxin-1, hindering Munc18-1 binding; binding to syntaxin-1-SNAP-25 heterodimers, precluding SNARE complex formation; and binding to trans-SNARE complexes, preventing fusion. Importantly, inhibition by αSNAP is avoided only when Munc18-1 binds first to syntaxin-1, leading to Munc18-1-Munc13-1-dependent liposome fusion. We propose that at least some of the inhibitory activities of αSNAP ensure that neurotransmitter release occurs through the highly-regulated Munc18-1-Munc13-1 pathway at the active zone.


2011 ◽  
Vol 100 (3) ◽  
pp. 185a
Author(s):  
Jiajie Diao ◽  
Janghyun Yoo ◽  
Han-Ki Lee ◽  
Yoosoo Yang ◽  
Dae-Hyuk Kweon ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 26 (12) ◽  
pp. 3347-3359.e6 ◽  
Author(s):  
Hao Zhou ◽  
Ziqing Wei ◽  
Shen Wang ◽  
Deqiang Yao ◽  
Rongguang Zhang ◽  
...  

Traffic ◽  
2019 ◽  
Vol 20 (11) ◽  
pp. 841-850 ◽  
Author(s):  
Gregory E. Miner ◽  
Katherine D. Sullivan ◽  
Chi Zhang ◽  
Logan R. Hurst ◽  
Matthew L. Starr ◽  
...  

2008 ◽  
Vol 183 (2) ◽  
pp. 323-337 ◽  
Author(s):  
Toshiaki Sakisaka ◽  
Yasunori Yamamoto ◽  
Sumiko Mochida ◽  
Michiko Nakamura ◽  
Kouki Nishikawa ◽  
...  

Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.


Sign in / Sign up

Export Citation Format

Share Document