scholarly journals SUBSTANTIATION OF MODERNIZED BLACKOUT & LOSS-OF-COOLANT ACCIDENT MANAGEMENT STRATEGY AT NUCLEAR POWER PLANTS WITH WWER

2020 ◽  
Vol 2 (61) ◽  
pp. 70-77
Author(s):  
V. Skalozubov ◽  
◽  
V. Spinov ◽  
D. Spinov ◽  
Т. Gablaya ◽  
...  

The analysis of the known results of RELAP5/V.3.2 simulation for loss of coolant & blackout accidents at WWER nuclear power plants showed that the design accident management strategies with design passive safety systems do not provide the necessary safety conditions for the maximum permissible temperature of fuel claddings, the minimum permissible level of coolant in the reactor and feed water in the steam generators. A conservative thermohydrodynamic model for a design and modernized blackout & loss-of-coolant accident management strategy at a nuclear power plant with WWER has been developed. Design passive safety systems carry out the design accident management strategy: pressurizer safety valves, secondary steam relief valves, and hydraulic reservoirs of the emergency core cooling system of the reactor. Promising afterheat removal passive systems and the reactor level and steam generator water level control systems carry out the modernized blackout & loss-of-coolant accident management strategy. The main conservative assumptions of the presented model of blackout & loss-of-coolant accidents: complete long-term failure of all electric pumps of active safety systems, the temperature of nuclear fuel in the central part of the fuel matrix is assumed as the maximum allowable one, effect of “run down” flow of a turbine feed pump and the coolant level in pressurizer on accident process is not considered. Computational modelling has found that violations of the safety conditions are over the entire range of leak sizes for the design blackout & loss-of-coolant accident management strategy. For the modernized blackout & loss-of-coolant accident management strategy, safety conditions are provided for 72 hours of the accident and more. The presented results of computational modelling of blackout accident management strategies for nuclear power plants can be used to modernize and improve symptom-informed emergency instructions and guidelines for the severe accident management at nuclear power plants with WWER. Application of the results of computational modelling of blackout accident management strategies is generally not substantiated for other types of reactor facilities. In this case, it is necessary to develop calculated models for blackout accident management taking into account the specifics of the structural and technical characteristics and operating conditions for safety related systems of nuclear power plants.

2019 ◽  
Vol 14 (2) ◽  
pp. 14-20
Author(s):  
V. І. Skalozubov ◽  
◽  
V. Yu. Grib ◽  
A. V. Korolev ◽  
T. V. Gablaya ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Marko Bohanec ◽  
Ivan Vrbanić ◽  
Ivica Bašić ◽  
Klemen Debelak ◽  
Luka Štrubelj

Author(s):  
Thomas G. Scarbrough

In a series of Commission papers, the U.S. Nuclear Regulatory Commission (NRC) described its policy for inservice testing (IST) programs to be developed and implemented at nuclear power plants licensed under 10 CFR Part 52. This paper discusses the expectations for IST programs based on those Commission policy papers as applied in the NRC staff review of combined license (COL) applications for new reactors. For example, the design and qualification of pumps, valves, and dynamic restraints through implementation of American Society of Mechanical Engineers (ASME) Standard QME-1-2007, “Qualification of Active Mechanical Equipment Used in Nuclear Power Plants,” as accepted in NRC Regulatory Guide (RG) 1.100 (Revision 3), “Seismic Qualification of Electrical and Active Mechanical Equipment and Functional Qualification of Active Mechanical Equipment for Nuclear Power Plants,” will enable IST activities to assess the operational readiness of those components to perform their intended functions. ASME has updated the Operation and Maintenance of Nuclear Power Plants (OM Code) to improve the IST provisions for pumps, valves, and dynamic restraints that are incorporated by reference in the NRC regulations with applicable conditions. In addition, lessons learned from performance experience and testing of motor-operated valves (MOVs) will be implemented as part of the IST programs together with application of those lessons learned to other power-operated valves (POVs). Licensee programs for the Regulatory Treatment of Non-Safety Systems (RTNSS) will be implemented for components in active nonsafety-related systems that are the first line of defense in new reactors that rely on passive systems to provide reactor core and containment cooling in the event of a plant transient. This paper also discusses the overlapping testing provisions specified in ASME Standard QME-1-2007; plant-specific inspections, tests, analyses, and acceptance criteria; the applicable ASME OM Code as incorporated by reference in the NRC regulations; specific license conditions; and Initial Test Programs as described in the final safety analysis report and applicable RGs. Paper published with permission.


2021 ◽  
Vol 30 (4) ◽  
pp. 36-47
Author(s):  
O. S. Lebedchenko ◽  
S. V. Puzach ◽  
V. I. Zykov

Introduction. The reliable operation of safety systems, that allows for the failure of no more than one safety system component, entails the safe shutdown and cool-down of an NPP reactor in the event of fire. However, the co-authors have not assessed the loss of performance by an insulating material, treated by intumescent compositions and used in the power cables of the above safety systems exposed to the simultaneous effect of various modes of fire and current loads.Goals and objectives. The purpose of the article is the theoretical assessment of the application efficiency of intumescent fire-retardant coatings in power cables used in the safety systems of nuclear power plants having water-cooled and water-moderated reactors under fire conditions. To achieve this goal, the temperature of the outer surface of the insulation and the intumescent fire-retardant coating was analyzed depending on the mode of fire. Theoretical foundations. A non-stationary one-dimensional heat transfer equation is solved to identify the temperature distribution inside the multilayered insulation and the fire-protection layer of a conductive core.Results and their discussion. The co-authors have identified dependences between the temperature of the outer surface of the insulation and the fire retarding composition of the three-core cable VVGng (A)-LS 3x2.5-0.66, on the one hand, and the temperature of the indoor gas environment for three standard modes of fire and one real fire mode. It is found that before the initiation of the process of destruction of the insulation material, the intumescence of the fire-retardant coating occurs only in case of a hydrocarbon fire. Under real fire conditions, the maximal insulation melting time before the initiation of intumescence of the fire-retardant coating at the minimal temperature of intumescence is 4.75 minutes, while the maximal time period from the initiation of destruction of the insulation material to the moment of the insulation melting is 6.0 minutes.Conclusions. An experimental or theoretical substantiation of parameters of intumescent fire retardants, performed using standard modes of fire, has proven the potential loss of operational properties by insulating materials of power cables, used in the safety systems of nuclear power plants, in case of a real fire. Therefore, it is necessary to establish a scientific rationale for the efficient use of fire retardants in the above cables with regard for the conditions of a real fire.


Sign in / Sign up

Export Citation Format

Share Document