scholarly journals Spindle assembly in the absence of chromosomes in mouse oocytes

Reproduction ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 731-738 ◽  
Author(s):  
Ji-Wen Yang ◽  
Zi-Li Lei ◽  
Yi-Liang Miao ◽  
Jun-Cheng Huang ◽  
Li-Hong Shi ◽  
...  

This study was carried out to investigate the contributions of chromosomes to spindle assembly in mouse oocytes. We generated two groups of cytoplasts (holo- and hemi-cytoplasts) by enucleation of germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes using micromanipulation technology. After in vitro culture for 18 h, spindles with different shapes (bi-, mono-, or multipolar) formed in most of these cytoplasts except in hemi-GV cytoplasts. Two or more spindles were observed in most of holo-GV, holo-MI, and holo-MII cytoplasts (76.1, 77.0, and 83.7% respectively). However, the proportions of hemi-MI and hemi-MII cytoplasts with multiple sets of spindles decreased to 17.6 and 20.7% respectively. A single bipolar spindle was observed in each sham-operated oocyte generated by removing different volumes of cytoplasm from the oocytes and keeping nuclei intact. Localization of γ-tubulin showed that microtubule organizing centers (MTOCs) were dispersed at each pole of the multiple sets of spindles formed in holo-cytoplasts. However, most of the MTOCs aggregated at the two poles of the bipolar spindle in sham-operated oocytes. Our results demonstrate that chromosomes are not essential for initiating spindle assembly but for directing distinct MTOCs to aggregate to form a bipolar spindle. Some factors of undetermined nature may pre-exist in an inactive form in GV-stage ooplasm, serving as initiators of spindle assembly upon their activation. Moreover, GV materials released into the cytoplasm may facilitate spindle assembly in normal meiotic maturation.

1976 ◽  
Vol 22 (3) ◽  
pp. 531-545
Author(s):  
P.M. Wassarman ◽  
W.J. Josefowicz ◽  
G.E. Letourneau

In vitro studies of meiotic maturation of mouse oocytes have been carried out in the presence of several drugs. The individual steps of nuclear progression, including dissolution of the nuclear (germinal vesicle) membrane, condensation of dictyate chromatin into compact bivalents, formation of the first metaphase spindle, and extrusion of the first polar body, are each susceptible to one or more of these drugs. Germinal vesicle breakdown, the initial morphological feature characteristic of meiotic maturation, is inhibited by dibutyryl cyclic AMP. However, even in the presence of dibutyryl cyclic AMP, the nuclear membrane becomes extremely convoluted and condensation of chromatin is initiated but aborts at a stage short of compact bivalents. Germinal vesicle breakdown and chromatin condensation take place in an apparently normal manner in the presence of puromycin, Colcemid, or cytochalasin B. Nuclear progression is blocked at the circular bivalent stage when oocytes are cultured continuously in the presence of puromycin or Colcemid, whereas oocytes cultured in the presence of cytochalasin B proceed to the first meiotic metaphase, form an apparently normal spindle, and arrest. Emission of a polar body is inhibited by all of these drugs. The inhibitory effects of these drugs on meiotic maturation are reversible to varying degrees dependent upon the duration of exposure to the drug and upon the nature of the drug. These studies suggest that dissolution of the mouse oocyte's germinal vesicle and condensation of chromatin are not dependent upon concomitant protein synthesis or upon microtubules. On the other hand, the complete condensation of chromatin into compact bivalents apparently requires breakdown of the germinal vesicle. Failure of homologous chromosomes to separate after normal alignment on the meiotic spindle in the presence of cytochalasin B suggest that microfilaments may be involved in nuclear progression at this stage of maturation. Cytokinesis, in the form of polar body formation, is blocked when any one of the earlier events of maturation fails to take place.


1978 ◽  
Vol 29 (1) ◽  
pp. 171-188
Author(s):  
P.M. Wassarman ◽  
K. Fujiwara

Immunofluorescent anti-tubulin staining has been used to follow nuclear progression from dictyate to metaphase II during meiotic maturation of mouse oocytes in vitro. Antibody directed against tubulin isolated from sea-urchin eggs decorates the metaphase I and metaphase II spindles, as well as the cytoplasmic bridge, midbody, and polar body of the maturing mouse oocytes. Changes in the tubulin-specific staining pattern during meiotic maturation in vitro take place in a highly reproducible manner. Oocytes exposed continuously to cytochalasin B arrest at metaphase I and display a spindle which by immunofluorescent staining is virtually indistinguishable from the spindle of untreated oocytes.


1976 ◽  
Vol 20 (3) ◽  
pp. 549-568 ◽  
Author(s):  
P.M. Wassarman ◽  
G.E. Letourneau

The nature, intracellular distribution, and role of proteins synthesized during meiotic maturation of mouse oocytes in vitro have been examined. Proteins synthesized during the initial stages of maturation are concentrated within the nucleus (germinal vesicle) and become intimately associated with the condensing chromosomes. Inhibition of protein synthesis during this period does not prevent germinal vesicle dissolution or chromosome condensation, but meiotic progression is blocked reversibly at the circular bivalent stage. A protein is synthesized during meiotic maturation of the mouse oocyte which exhibits several of the characteristics of the very lysine-rich histone, FI; this and other histones are phosphorylated during the initial stages of maturation. These results are discussed in relation to studies of meiotic maturation of oocytes from non-mammalian species and chromosome condensation in both oocytes and mitotic cells.


2017 ◽  
Vol 44 (1) ◽  
pp. 15
Author(s):  
Jeong Yoon ◽  
Kyoung-Mi Juhn ◽  
San-Hyun Yoon ◽  
Yong Ko ◽  
Jin-Ho Lim

1976 ◽  
Vol 21 (3) ◽  
pp. 523-535
Author(s):  
P.M. Wassarman ◽  
D.F. Albertini ◽  
W.J. Josefowicz ◽  
G.E. Letourneau

Mouse oocytes are induced by cytochalasin B to undergo ‘pseudo-cleavage’ in vitro into 2 equally sized and separable compartments. This response to the drug is dependent upon the meiotic state of the oocytes, as well as upon the presence of an intact zona pellucida. The resulting 2 cellular compartments can be completely separated from another and cultured in vitro. Each of the compartments possesses characteristic structural features. The most pronounced structural differences include: (i) the presence of a nucleus (germinal vesicle) and nucleolus in one compartment; (ii) the presence of microvilli on the surface of the anucleate, but not the nucleate, compartment; and (iii) the localization (segregation) of mitochondria at the periphery of the anucleate, but not the nucleate, compartment. The results presented suggest that pseudo-cleavage induced by cytochalasin B arises as a consequence of a limited interaction of the drug with the oocyte surface and/or cortex and that it may represent a topographical dissociation of transporting and non-transporting regions of the membrane. These and other features of mouse oocytes treated with cytochalasin B are of interest in view of the involvement of the oocyte zona pellucida and plasma membrane during meiotic maturation, fertilization, and early embryogenesis.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


1988 ◽  
Vol 90 (4) ◽  
pp. 543-553 ◽  
Author(s):  
J. Gautier ◽  
J.K. Pal ◽  
M.F. Grossi de Sa ◽  
J.C. Beetschen ◽  
K. Scherrer

The prosomes, a novel type of small RNA-protein complex previously characterized in avian and mammalian cells, were isolated from axolotl (Ambystoma mexicanum) oocytes and identified by sedimentation analysis and protein composition. The prosomal nature of these particles was further ascertained by immunoblot analysis with anti-duck prosome monoclonal antibodies. By in vitro [35S]methionine labelling, de novo synthesis of prosomal proteins could be detected neither during oogenesis nor meiotic maturation. The results obtained by both indirect immunofluorescence and immunoblot analyses demonstrated a dramatic change in the localization of prosomal antigens during oocyte development. They were initially detected in the oocyte cytoplasm, during oocyte growth. At the end of vitellogenesis (stages V-VI), they entered the nucleus (germinal vesicle) and were accumulated there to the highest concentration. During oocyte maturation, after nuclear envelope breakdown, prosomal antigens were found to be localized again in the cytoplasm, until fertilization. No specific localization of prosomal antigens in mature oocytes, unfertilized and fertilized eggs was observed within the oocyte cytoplasm in relation to the cytoplasmic rearrangements leading to grey crescent formation.


Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 97-103 ◽  
Author(s):  
H.J. Clarke ◽  
J. Rossant ◽  
Y. Masui

Mouse oocytes at metaphase I were treated with puromycin, which caused the chromosomes to become decondensed within an interphase nucleus. When the oocytes were allowed to resume protein synthesis, they returned to metaphase within 8–10 h and neither synthesized DNA nor cleaved, indicating that they had not been parthenogenetically activated by the puromycin treatment. However, when dibutyryl cyclic AMP was added to the medium after protein synthesis resumed, the oocytes remained in interphase. These oocytes maintained in interphase began DNA synthesis beginning 20 h after puromycin withdrawal, even though no activation stimulus had been given to them. After transfer to the oviducts of foster mothers, the oocytes could develop to the blastocyst stage. These results indicate that oocytes whose chromosomes were decondensed by puromycin treatment at metaphase I could begin parthenogenetic development in the absence of an activating stimulus, provided that they were prevented from returning to metaphase. In contrast, when the puromycin-treated oocytes were allowed to return to metaphase, they became developmentally arrested at the end of maturation. This suggests that the mechanism responsible for the developmental arrest of mature oocytes at metaphase II depends on cytoplasmic conditions that cause chromosome condensation to the metaphase state.


Chemosphere ◽  
2020 ◽  
Vol 249 ◽  
pp. 126182 ◽  
Author(s):  
Zhi-Ming Ding ◽  
Li-Ping Hua ◽  
Muhammad Jamil Ahmad ◽  
Muhammad Safdar ◽  
Fan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document