scholarly journals Dynamics of foot-and-mouth disease virus replication in cells at different phases of the cell-division cycle

2014 ◽  
Vol 1 (3) ◽  
pp. 250
Author(s):  
Claudia DOEL ◽  
Zhidong ZHANG ◽  
Lise MAZELET ◽  
Ryan WATERS ◽  
John BASHIRUDDIN
2004 ◽  
Vol 85 (11) ◽  
pp. 3213-3217 ◽  
Author(s):  
Ronen Kahana ◽  
Larisa Kuznetzova ◽  
Arie Rogel ◽  
Mordechai Shemesh ◽  
Dalia Hai ◽  
...  

Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is one of the most dangerous diseases of cloven-hoofed animals and is a constant threat to the dairy and beef industries in the Middle East and other regions of the world, despite intensive vaccination programmes. In this work, the ability of specific small interfering (si)RNAs to inhibit virus replication in BHK-21 cells was examined. By using bioinformatic computer programs, all FMDV sequences in public-domain databases were analysed. The analysis revealed three regions of at least 22 bp with 100 % identity in all FMDV entries. From these sequences, three specific siRNA molecules were prepared and used to test the ability of siRNAs to inhibit virus replication. By using real-time quantitative PCR to measure the amount of viral RNA in infected cells, it was shown that virus replication was inhibited in cells that were transfected with siRNAs. When viral titres were examined, 100 % inhibition of growth could be demonstrated in cells transfected with a mixture of all three anti-FMDV siRNAs, compared with control cells transfected with anti-LacZ siRNA.


2018 ◽  
Vol 32 (12) ◽  
pp. 6706-6723 ◽  
Author(s):  
Huisheng Liu ◽  
Qiao Xue ◽  
Weijun Cao ◽  
Fan Yang ◽  
Linna Ma ◽  
...  

2016 ◽  
Vol 15 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Solmaz Rafiei ◽  
Seyedeh Elham Rezatofighi ◽  
Mohammad Roayaei Ardakani ◽  
Saadat Rastegarzadeh

2018 ◽  
Vol 92 (8) ◽  
Author(s):  
Jonas Kjær ◽  
Graham J. Belsham

ABSTRACTFoot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational “cleavage” of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed “ribosome skipping” or “StopGo.” Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E14, S15, and N16within the 2A sequences of infectious FMDVs despite their reported “cleavage” efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P17, G18, or P19, which displayed little or no “cleavage” activityin vitro, were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E14, S15, N16, and P19resulted in partial “cleavage” of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational “cleavage.” Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient “cleavage” at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV.IMPORTANCEFoot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational “cleavage” of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient “cleavage” at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV.


2012 ◽  
Vol 86 (22) ◽  
pp. 12080-12090 ◽  
Author(s):  
D. P. Gladue ◽  
V. O'Donnell ◽  
R. Baker-Branstetter ◽  
L. G. Holinka ◽  
J. M. Pacheco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document