inhibit virus replication
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Zhesheng He ◽  
Wencong Zhao ◽  
Wenchao Niu ◽  
Xuejiao Gao ◽  
Xingfa Gao ◽  
...  

SummarySARS-CoV-2 has emerged as a world public health threat. Herein, we report that the clinical approved auranofin could perfectly inhibit the activity of 3-chymotrypsin-like cysteine protease (Mpro or 3CLpro) of SARS-CoV-2. Gold cluster could significantly inhibit 3CLpro of SARS-COV-2. Phenyl isothiocyanate and Vitamin K3 could well suppress the activity of 3CLpro. For Mpro inhibition, IC50 of auranofin, Vitamin K3, phenyl isothiocyanate, gold cluster are about 0.51μM, 7.96μM, 10.13μM, 1.61μM, respectively. These compounds may be with potentials for treatment SARS-CoV-2 virus replication. Especially for FDA approved auranofin, it is an anti-inflammation drug in clinic, thus it may with strong potential to inhibit virus replication and suppress the inflammation damage in COVID-19 patients. Gold cluster is with better safety index and well anti-inflammation in vitro/vivo, therefore it is with potential to inhibit virus replication and suppress the inflammation damage caused by COVID-19 virus. As Au(I) ion is active metabolism specie derived from gold compounds or gold clusters in vivo, further computational studies revealed Au ion could tightly bind thiol group of Cys145 residue of 3CLpro thus inhibit enzyme activity. Also, phenyl isothiocyanate and Vitamin K3 may interact with thiol group of Cys145 via Michael addition reaction, molecular dynamic (MD) theory studied are applied to confirmed these small molecules are stable in the pocket and inhibit Mpro activity.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Sharkey ◽  
Natalia Sharova ◽  
Idrees Mohammed ◽  
Sarah E. Huff ◽  
Indrasena Reddy Kummetha ◽  
...  

ABSTRACTThe HIV-1 accessory protein Vif, which counteracts the antiviral action of the DNA-editing cytidine deaminase APOBEC3G (A3G), is an attractive and yet unexploited therapeutic target. Vif reduces the virion incorporation of A3G by targeting the restriction factor for proteasomal degradation in the virus-producing cell. Compounds that inhibit Vif-mediated degradation of A3G in cells targeted by HIV-1 would represent a novel antiviral therapeutic. We previously described small molecules with activity consistent with Vif antagonism. In this study, we derived inhibitor escape HIV-1 variants to characterize the mechanism by which these novel agents inhibit virus replication. Here we show that resistance to these agents is dependent on an amino acid substitution in Vif (V142I) and on a point mutation that likely upregulates transcription by modifying the lymphocyte enhancing factor 1 (LEF-1) binding site. Molecular modeling demonstrated a docking site in the Vif-Elongin C complex that is disrupted by these inhibitors. This docking site is lost when Vif acquires the V142I mutation that leads to inhibitor resistance. Competitive fitness experiments indicated that the V142I Vif and LEF-1 binding site mutations created a virus that is better adapted to growing in the presence of A3G than the wild-type virus.IMPORTANCEAlthough antiretroviral therapy can suppress HIV-1 replication effectively, virus reservoirs persist in infected individuals and virus replication rapidly rebounds if therapy is interrupted. Currently, there is a need for therapeutic approaches that eliminate, reduce, or control persistent viral reservoirs if a cure is to be realized. This work focuses on the preclinical development of novel, small-molecule inhibitors of the HIV-1 Vif protein. Vif inhibitors represent a new class of antiretroviral drugs that may expand treatment options to more effectively suppress virus replication or to drive HIV-1 reservoirs to a nonfunctional state by harnessing the activity of the DNA-editing cytidine deaminase A3G, a potent, intrinsic restriction factor expressed in macrophage and CD4+T cells. In this study, we derived inhibitor escape variants to characterize the mechanism by which these novel agents inhibit virus replication and to provide evidence for target validation.


RNA ◽  
2018 ◽  
Vol 24 (9) ◽  
pp. 1172-1182 ◽  
Author(s):  
Kevin Tsai ◽  
David G. Courtney ◽  
Edward M. Kennedy ◽  
Bryan R. Cullen

Author(s):  
Hao Zhang ◽  
Zhiyi He ◽  
Wenting Zeng ◽  
Hong-Juan Peng

Dengue infection is a serious public health problem in tropical and subtropical areas. With the recent outbreaks of Zika disease and its reported correlation with microcephaly, the large number of pregnancies with dengue infection has become a serious concern. This review describes the epidemiological characteristics of pregnancy with dengue and the initial immune response to dengue infection, especially in IFNs production in this group of patients. Dengue is much more prevalent in pregnant women compared with other populations. The severity of dengue is correlated with the level of IFNs, while the serum IFN level must be sufficiently high to maintain the pregnancy and to inhibit virus replication.


2010 ◽  
Vol 84 (11) ◽  
pp. 5540-5549 ◽  
Author(s):  
B. Julg ◽  
K. L. Williams ◽  
S. Reddy ◽  
K. Bishop ◽  
Y. Qi ◽  
...  

ABSTRACT Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.


2006 ◽  
Vol 36 ◽  
pp. S113
Author(s):  
X. Dong ◽  
A. Premkumar ◽  
G. Haqshenas ◽  
P.W. Gage ◽  
E.J. Gowans

2005 ◽  
Vol 2005 (Fall) ◽  
Author(s):  
Jens Kurreck ◽  
Steffen Schubert ◽  
Denise Werk ◽  
Vanessa Lindig ◽  
Heinz Zeichhardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document