Percolation Processes in a Network of Grain Boundaries in Ultrafine-Grained Materials

Author(s):  
A. Zhilyaev ◽  
A. Pshenichnyuk
2015 ◽  
Vol 5 ◽  
pp. 111-126
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
I.P. Mishin

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.


2015 ◽  
Vol 5 ◽  
pp. 77-92 ◽  
Author(s):  
Xavier Sauvage ◽  
Yana Nasedkina

During the past two decades, processing of ultrafine grained materials using severe plastic deformation techniques has attracted great interest in the scientific community. Although the up-scaling of processes and the lack of ductility of ultrafine grained alloys are still some important challenges, these techniques look promising because they produce bulk materials free of porosities. More recently, some strategies to combine precipitation hardening and ultrafine grained structures have been proposed. It has also been shown that nanoscaled composite materials could be successfully processed. This experimental work rose however some very fundamental scientific questions about the influence of severe plastic deformation on the precipitation mechanisms or on the formation of supersaturated solid solution through mechanical mixing. The driving force and the thermodynamics of these phase transformations are of course affected by the high amount of energy stored in severely deformed alloys, especially as interfacial energy. But grain boundaries, with the help of dislocations and point defects, also play an important role in the kinetics. In this paper, it is proposed to shortly review these phenomena and the underlying mechanisms with a special emphasis on the contribution of grain boundaries.


2019 ◽  
Vol 391 ◽  
pp. 201-214
Author(s):  
Vladimir V. Popov

Capabilities of application of Mössbauer spectroscopy for determination of grain-boundary diffusion parameters in coarse-grained and ultrafine-grained materials have been analyzed. Application of this method for revealing of non-equilibrium state of grain boundaries in ultrafine-grained materials obtained by severe plastic deformation is demonstrated.


2008 ◽  
Vol 584-586 ◽  
pp. 1012-1017 ◽  
Author(s):  
Sergiy V. Divinski ◽  
Gerhard Wilde

The paper provides an overview of recent results of the radiotracer investigations of short-circuit diffusion in ultra fine grained (UFG) materials produced by severe plastic deformation (SPD). Different material classes (copper of different purity levels and Cu alloys) are considered. The study is focused on the existence of non-equilibrium grain boundaries after SPD. Although a dominant contribution of common high-angle grain boundaries with very similar diffusivities as those in the corresponding coarse-grained material is established, much faster diffusion rates are also observed experimentally. The nature and kinetic properties of these “high mobility” paths in different materials are investigated and critically discussed.


Sign in / Sign up

Export Citation Format

Share Document